Distinguishing glioma recurrence from treatment effect after radiochemotherapy and immunotherapy.

[1]  Hongmin Cai,et al.  Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. , 2008, Academic radiology.

[2]  A. Brandes,et al.  MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  Dieta Brandsma,et al.  Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. , 2008, The Lancet. Oncology.

[4]  P. Sminia,et al.  Reirradiation tolerance of the human brain. , 2008, International journal of radiation oncology, biology, physics.

[5]  Hong Liu,et al.  Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusion-weighted imaging. , 2007, International journal of radiation oncology, biology, physics.

[6]  Andrew E. Sloan,et al.  Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma , 2007, Journal of Neuro-Oncology.

[7]  Hong Liu,et al.  Multivoxel 3D proton MR spectroscopy in the distinction of recurrent glioma from radiation injury , 2007, Journal of Neuro-Oncology.

[8]  Takashi Inoue,et al.  Diffusion tensor imaging for differentiation of recurrent brain tumor and radiation necrosis after radiotherapy—Three case reports , 2007, Clinical Neurology and Neurosurgery.

[9]  A. Brandes,et al.  Temozolomide 3 weeks on and 1 week off as first-line therapy for recurrent glioblastoma: phase II study from gruppo italiano cooperativo di neuro-oncologia (GICNO) , 2006, British Journal of Cancer.

[10]  R. Mirimanoff,et al.  Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[11]  J. Ruben,et al.  Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. , 2006, International journal of radiation oncology, biology, physics.

[12]  R. Schmidt,et al.  Cancer therapy-associated CNS neuropathology: an update and review of the literature , 2006, Acta Neuropathologica.

[13]  B. Nan,et al.  Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy. , 2005, AJR. American journal of roentgenology.

[14]  Heinz-Peter Schlemmer,et al.  Follow-up gliomas after radiotherapy: 1H MR spectroscopic imaging for increasing diagnostic accuracy , 2005, Neuroradiology.

[15]  Mark E Mullins,et al.  Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. , 2005, AJNR. American journal of neuroradiology.

[16]  W. Koch,et al.  Positron Emission Tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus Magnetic Resonance Imaging in the Diagnosis of Recurrent Gliomas , 2005, Neurosurgery.

[17]  Susan M. Chang,et al.  Serial diffusion-weighted magnetic resonance imaging in cases of glioma: distinguishing tumor recurrence from postresection injury. , 2005, Journal of neurosurgery.

[18]  Toshinori Hirai,et al.  Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. , 2005, AJNR. American journal of neuroradiology.

[19]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[20]  M. J. van den Bent,et al.  Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression , 2004, Neurology.

[21]  R I Grossman,et al.  Three-dimensional proton spectroscopy of deep gray matter nuclei in relapsing–remitting MS , 2004, Neurology.

[22]  M. Mehta,et al.  Treatment of malignant gliomas: radiotherapy, chemotherapy and integration of new targeted agents , 2004, Expert review of neurotherapeutics.

[23]  A. Grosu,et al.  Radiotherapy for High-Grade Gliomas , 2004, Strahlentherapie und Onkologie.

[24]  M. Morino,et al.  Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery —In malignant glioma— , 2004, Annals of nuclear medicine.

[25]  T. Mikkelsen,et al.  Associations among Magnetic Resonance Spectroscopy, Apparent Diffusion Coefficients, and Image-Guided Histopathology with Special Attention to Radiation Necrosis , 2004, Neurosurgery.

[26]  E. B. Butler,et al.  Hypofractionated intensity-modulated radiotherapy for primary glioblastoma multiforme. , 2004, International journal of radiation oncology, biology, physics.

[27]  C. Eskey,et al.  Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. , 2004, AJNR. American journal of neuroradiology.

[28]  L. Liau,et al.  Modulation of major histocompatibility complex Class I molecules and major histocompatibility complex-bound immunogenic peptides induced by interferon-alpha and interferon-gamma treatment of human glioblastoma multiforme. , 2004, Journal of neurosurgery.

[29]  S. Leung,et al.  Diffusion-Weighted Magnetic Resonance Imaging in Radiation-Induced Cerebral Necrosis: Apparent Diffusion Coefficient in Lesion Components , 2003, Journal of computer assisted tomography.

[30]  M. Gilbert,et al.  Cerebral Radiation Necrosis , 2003, The neurologist.

[31]  S. Nelson Multivoxel magnetic resonance spectroscopy of brain tumors. , 2003, Molecular cancer therapeutics.

[32]  R. Bammer Basic principles of diffusion-weighted imaging. , 2003, European journal of radiology.

[33]  E. A. Chiocca,et al.  In vivo 3-T MR spectroscopy in the distinction of recurrent glioma versus radiation effects: initial experience. , 2002, Radiology.

[34]  M. Kitajima,et al.  Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI , 2002, Neuroradiology.

[35]  R. Coleman,et al.  Positron emission tomography imaging of brain tumors. , 2002, Neuroimaging clinics of North America.

[36]  M. Berger,et al.  Histopathological validation of a three-dimensional magnetic resonance spectroscopy index as a predictor of tumor presence. , 2002, Journal of neurosurgery.

[37]  Mauricio Castillo,et al.  Diffusion-weighted magnetic resonance imaging. , 2002, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[38]  G. van Kaick,et al.  Differentiation of radiation necrosis from tumor progression using proton magnetic resonance spectroscopy , 2002, Neuroradiology.

[39]  E Moser,et al.  Multivoxel 3D proton spectroscopy in the brain at 1.5 versus 3.0 T: signal-to-noise ratio and resolution comparison. , 2001, AJNR. American journal of neuroradiology.

[40]  P Bachert,et al.  Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic radiotherapy. , 2001, AJNR. American journal of neuroradiology.

[41]  S. Sourbron,et al.  Diffusion and perfusion MRI: basic physics. , 2001, European journal of radiology.

[42]  A. J. Kumar,et al.  Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. , 2000, Radiology.

[43]  B. Drayer,et al.  Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? , 1998, AJNR. American journal of neuroradiology.

[44]  R Kasrai,et al.  Magnetic Resonance Spectroscopy Guided Brain Tumor Resection: Differentiation Between Recurrent Glioma and Radiation Change in Two Diagnostically Difficult Cases , 1998, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[45]  Z. Ram,et al.  Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells , 1997, Nature Medicine.

[46]  A. Baxter,et al.  Serial MR in gene therapy for recurrent glioblastoma: initial experience and work in progress. , 1997, AJNR. American journal of neuroradiology.

[47]  Susan M. Chang,et al.  Reirradiation of primary CNS tumors. , 1996, International journal of radiation oncology, biology, physics.

[48]  M. Castillo,et al.  MR of recurrent high-grade astrocytomas after intralesional immunotherapy. , 1996, AJNR. American journal of neuroradiology.

[49]  K. Sartor,et al.  Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. , 1995, Neurosurgery.

[50]  R. Zimmerman Imaging of adult central nervous system primary malignant gliomas. Staging and follow‐up , 1991, Cancer.

[51]  R. Soffietti,et al.  Delayed adverse effects after irradiation of gliomas: clinicopathological analysis , 2005, Journal of Neuro-Oncology.

[52]  F. Floeth,et al.  Comparative follow-up of enhancement phenomena with MRI and Proton MR Spectroscopic Imaging after intralesional immunotherapy in glioblastoma--Report of two exceptional cases. , 2002, Zentralblatt fur Neurochirurgie.

[53]  J K Smith,et al.  Apparent diffusion coefficients in the evaluation of high-grade cerebral gliomas. , 2001, AJNR. American journal of neuroradiology.

[54]  J. Debus,et al.  Postoperative radiotherapy of astrocytomas. , 2001, Seminars in surgical oncology.

[55]  M. McDermott,et al.  Interstitial brachytherapy for malignant brain tumors. , 1998, Seminars in surgical oncology.

[56]  W. J. Oakes,et al.  Reversible neurotoxicity following hyperfractionated radiation therapy of brain stem glioma. , 1991, Medical and pediatric oncology.

[57]  H. Hirschberg,et al.  Reversible oedema and necrosis after irradiation of the brain. Diagnostic procedures and clinical manifestations. , 1990, Acta oncologica.