Cyanobacteria use micro-optics to sense light direction

Bacterial phototaxis was first recognized over a century ago, but the method by which such small cells can sense the direction of illumination has remained puzzling. The unicellular cyanobacterium Synechocystis sp. PCC 6803 moves with Type IV pili and measures light intensity and color with a range of photoreceptors. Here, we show that individual Synechocystis cells do not respond to a spatiotemporal gradient in light intensity, but rather they directly and accurately sense the position of a light source. We show that directional light sensing is possible because Synechocystis cells act as spherical microlenses, allowing the cell to see a light source and move towards it. A high-resolution image of the light source is focused on the edge of the cell opposite to the source, triggering movement away from the focused spot. Spherical cyanobacteria are probably the world’s smallest and oldest example of a camera eye. DOI: http://dx.doi.org/10.7554/eLife.12620.001

[1]  L. Duysens,et al.  The flattening of the absorption spectrum of suspensions, as compared to that of solutions. , 1956, Biochimica et biophysica acta.

[2]  M. Ikeuchi,et al.  Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. , 2001, Plant & cell physiology.

[3]  D. Bhaya,et al.  Multiple Light Inputs Control Phototaxis in Synechocystis sp. Strain PCC6803 , 2003, Journal of bacteriology.

[4]  N. Dencher,et al.  Two photosystems controlling behavioural responses of Halobacterium halobium , 1975, Nature.

[5]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[6]  M. Ikeuchi,et al.  Novel putative photoreceptor and regulatory genes Required for the positive phototactic movement of the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. , 2000, Plant & cell physiology.

[7]  Aravinthan D. T. Samuel,et al.  Envelope structure of Synechococcus sp. WH8113, a nonflagellated swimming cyanobacterium , 2001, BMC Microbiology.

[8]  C. Mullineaux,et al.  Involvement of an FtsH homologue in the assembly of functional photosystem I in the cyanobacterium Synechocystis sp. PCC 6803 , 2000, FEBS letters.

[9]  Masakatsu Watanabe,et al.  Equal‐quantum Action Spectra Indicate Fluence‐rate–selective Action of Multiple Photoreceptors for Photomovement of the Thermophilic Cyanobacterium Synechococcus elongatus ¶ , 2001, Photochemistry and photobiology.

[10]  I. Zhulin,et al.  Origins and Diversification of a Complex Signal Transduction System in Prokaryotes , 2010, Science Signaling.

[11]  Michael P. Sheetz,et al.  Pilus retraction powers bacterial twitching motility , 2000, Nature.

[12]  Jeffrey D. Gelorme,et al.  High-aspect-ratio resist for thick-film applications , 1995, Advanced Lithography.

[13]  T. Engelmann Bacterium photometricum , 1883, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[14]  J. Meeks,et al.  Evidence that a modified type IV pilus‐like system powers gliding motility and polysaccharide secretion in filamentous cyanobacteria , 2015, Molecular microbiology.

[15]  박미선,et al.  Synechocystis sp. PCC 6803으로부터 광활성 종속영양 생장결핍 돌연변이체의 분리 및 특성 , 1994 .

[16]  Ned S Wingreen,et al.  Responding to chemical gradients: bacterial chemotaxis. , 2012, Current opinion in cell biology.

[17]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[18]  D. Bhaya,et al.  Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. PCC6803 , 2000, Molecular microbiology.

[19]  T. Sakurai,et al.  Bipolar localization of putative photoreceptor protein for phototaxis in thermophilic cyanobacterium Synechococcus elongatus. , 2002, Plant & cell physiology.

[20]  Pedro Quelhas,et al.  Cancer Cell Detection and Tracking Based on Local Interest Point Detectors , 2013, ICIAR.

[21]  J. Waterbury,et al.  Generic assignments, strain histories, and properties of pure cultures of cyanobacteria , 1979 .

[22]  Pedro Quelhas,et al.  Cancer Cell Detection and Morphology Analysis Based on Local Interest Point Detectors , 2013, IbPRIA.

[23]  C. Mullineaux,et al.  Motility in cyanobacteria: polysaccharide tracks and Type IV pilus motors , 2015, Molecular microbiology.

[24]  B. Maier,et al.  Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins , 2009, Molecular microbiology.

[25]  C. Mullineaux,et al.  PilB localization correlates with the direction of twitching motility in the cyanobacterium Synechocystis sp. PCC 6803. , 2015, Microbiology.

[26]  A. Taflove,et al.  Photonic nanojets , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[27]  A. Wilde,et al.  Phototaxis in the Cyanobacterium Synechocystis sp. PCC 6803: Role of Different Photoreceptors , 2005, Photochemistry and photobiology.

[28]  M. Ikeuchi,et al.  Phototactic motility in the unicellular cyanobacterium Synechocystis sp. PCC 6803 , 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[29]  C. Mullineaux,et al.  Membrane‐specific targeting of green fluorescent protein by the Tat pathway in the cyanobacterium Synechocystis PCC6803 , 2003, Molecular microbiology.

[30]  L Bogorad,et al.  Photomovement of the Gliding Cyanobacterium Synechocystis sp. PCC 6803 , 1999, Photochemistry and photobiology.

[31]  D. Häder,et al.  Optical properties of Dictyostelium discoideum pseudoplasmodia responsible for phototactic orientation , 1983 .

[32]  D. Bhaya Light matters: phototaxis and signal transduction in unicellular cyanobacteria , 2004, Molecular microbiology.

[33]  Hervé Rigneault,et al.  Direct imaging of photonic nanojets. , 2008, Optics express.

[34]  Björn Voß,et al.  Microevolution in Cyanobacteria: Re-sequencing a Motile Substrain of Synechocystis sp. PCC 6803 , 2012, DNA research : an international journal for rapid publication of reports on genes and genomes.

[35]  W. Shropshire The Lens Effect and Phototropism of Phycomyces , 1962, The Journal of general physiology.

[36]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[37]  H. Berg,et al.  Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking , 1972, Nature.

[38]  D. Häder Photosensory behavior in procaryotes. , 1987, Microbiological reviews.

[39]  Matthew S. Burriesci,et al.  Phototaxis and Impaired Motility in Adenylyl Cyclase and Cyclase Receptor Protein Mutants of Synechocystis sp. Strain PCC 6803 , 2006, Journal of bacteriology.

[40]  D. Bhaya,et al.  Light regulation of type IV pilus-dependent motility by chemosensor-like elements in Synechocystis PCC6803 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[41]  A. Wilde,et al.  Light‐induced alteration of c‐di‐GMP level controls motility of Synechocystis sp. PCC 6803 , 2012, Molecular microbiology.

[42]  J. Waterbury,et al.  Chemotaxis toward Nitrogenous Compounds by Swimming Strains of Marine Synechococcus spp , 1989, Applied and environmental microbiology.

[43]  Gianluca Maddalo,et al.  Proteomics of Synechocystis sp. PCC 6803 , 2007, The FEBS journal.

[44]  G. Oster,et al.  On the Mysterious Propulsion of Synechococcus , 2012, PloS one.

[45]  D. Oesterhelt,et al.  Morphology, function and isolation of halobacterial flagella. , 1984, Journal of molecular biology.

[46]  J. Myers,et al.  Light Harvesting in Anacystis nidulans Studied in Pigment Mutants. , 1980, Plant physiology.

[47]  G. Kreimer,et al.  The green algal eyespot apparatus: a primordial visual system and more? , 2009, Current Genetics.

[48]  D. Hader Photosensory Behavior in Procaryotes , 2022 .

[49]  M. Ohmori,et al.  An adenylate cyclase, Cya1, regulates cell motility in the cyanobacterium Synechocystis sp. PCC 6803. , 1999, Plant & cell physiology.

[50]  Jaime M. Yassif,et al.  Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner , 2015, eLife.

[51]  Carl E. Bauer,et al.  Macroscopic phototactic behavior of the purple photosynthetic bacterium Rhodospirillum centenum , 2004, Archives of Microbiology.

[52]  S. Itoh,et al.  Single-cell confocal spectrometry of a filamentous cyanobacterium Nostoc at room and cryogenic temperature. Diversity and differentiation of pigment systems in 311 cells. , 2012, Plant & cell physiology.

[53]  D. Bhaya,et al.  Maintenance of motility bias during cyanobacterial phototaxis. , 2015, Biophysical journal.

[54]  G. Wadhams,et al.  Making sense of it all: bacterial chemotaxis , 2004, Nature Reviews Molecular Cell Biology.