Spatial gradient consistency for unsupervised learning of hyperspectral demosaicking: application to surgical imaging

[1]  Amir S. Bernat,et al.  NTIRE 2022 Spectral Demosaicing Challenge and Data Set , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[2]  Sebastien Ourselin,et al.  Deep learning approach for hyperspectral image demosaicking, spectral correction and high-resolution RGB reconstruction , 2021, Comput. methods Biomech. Biomed. Eng. Imaging Vis..

[3]  Wenfang Sun,et al.  Hyperspectral reconstruction from RGB images based on Res2-Unet deep learning network , 2022, Optics and Precision Engineering.

[4]  S. Ourselin,et al.  Intraoperative hyperspectral label-free imaging: from system design to first-in-patient translation , 2021, Journal of physics D: Applied physics.

[5]  Joni Hyttinen,et al.  Oral and Dental Spectral Image Database—ODSI-DB , 2020, Applied Sciences.

[6]  Xiaochun Cao,et al.  Correction to: Single Image Super-Resolution via a Holistic Attention Network , 2020, ECCV.

[7]  Lena Maier-Hein,et al.  Surgical spectral imaging , 2020, Medical Image Anal..

[8]  Sebastien Ourselin,et al.  Intraoperative multispectral and hyperspectral label‐free imaging: A systematic review of in vivo clinical studies , 2019, Journal of biophotonics.

[9]  Guang-Zhong Yang,et al.  In-Vivo Hyperspectral Human Brain Image Database for Brain Cancer Detection , 2019, IEEE Access.

[10]  Yun Fu,et al.  Residual Non-local Attention Networks for Image Restoration , 2019, ICLR.

[11]  Lambert Schomaker,et al.  Hyperspectral demosaicking and crosstalk correction using deep learning , 2018, Machine Vision and Applications.

[12]  Peer W Kämmerer,et al.  Hyperspectral imaging in perfusion and wound diagnostics – methods and algorithms for the determination of tissue parameters , 2018, Biomedizinische Technik. Biomedical engineering.

[13]  Qian Du,et al.  Hyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network , 2017, Remote. Sens..

[14]  Kyoung Mu Lee,et al.  Enhanced Deep Residual Networks for Single Image Super-Resolution , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[15]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[16]  Xiaoou Tang,et al.  Learning a Deep Convolutional Network for Image Super-Resolution , 2014, ECCV.

[17]  Guolan Lu,et al.  Medical hyperspectral imaging: a review , 2014, Journal of biomedical optics.

[18]  Rafal Mantiuk,et al.  Comparison of Four Subjective Methods for Image Quality Assessment , 2012, Comput. Graph. Forum.

[19]  W. Yu,et al.  Colour demosaicking method using adaptive cubic convolution interpolation with sequential averaging , 2006 .

[20]  Eldad Haber,et al.  Intensity Gradient Based Registration and Fusion of Multi-modal Images , 2006, MICCAI.

[21]  Russell C. Hardie,et al.  Application of the stochastic mixing model to hyperspectral resolution enhancement , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[22]  D. Hunter MM algorithms for generalized Bradley-Terry models , 2003 .

[23]  Yücel Altunbasak,et al.  Color plane interpolation using alternating projections , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[24]  John C. Handley,et al.  Comparative Analysis of Bradley-Terry and Thurstone-Mosteller Paired Comparison Models for Image Quality Assessment , 2001, PICS.

[25]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[26]  R. Fletcher Practical Methods of Optimization , 1988 .

[27]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .