Cubic symmetric graphs of order a small number times a prime or a prime square

A graph is s-regular if its automorphism group acts regularly on the set of its s-arcs. In this paper, the s-regular elementary abelian coverings of the complete bipartite graph K"3","3 and the s-regular cyclic or elementary abelian coverings of the complete graph K"4 for each s>=1 are classified when the fibre-preserving automorphism groups act arc-transitively. A new infinite family of cubic 1-regular graphs with girth 12 is found, in which the smallest one has order 2058. As an interesting application, a complete list of pairwise non-isomorphic s-regular cubic graphs of order 4p, 6p, 4p^2 or 6p^2 is given for each s>=1 and each prime p.

[1]  Jin Ho Kwak,et al.  Regular graph coverings whose covering transformation groups have the isomorphism extension property , 1996, Discret. Math..

[2]  Frank Harary,et al.  Graph Theory , 2016 .

[3]  Jozef Širáň,et al.  Constructing and forbidding automorphisms in lifted maps , 1997 .

[4]  Robert Frucht A one-regular graph of degree three , 1952 .

[5]  Yan-Quan Feng,et al.  s-Regular cyclic coverings of the three-dimensional hypercube Q3 , 2003, Eur. J. Comb..

[6]  W. T. Tutte A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  B. Alspach,et al.  Constructing graphs which are ½-transitive , 1994 .

[8]  Aleksander Malnič,et al.  Cubic edge-transitive graphs of order 2p3 , 2004, Discret. Math..

[9]  Ming Yao Xu,et al.  2-Arc-transitive regular covers of complete graphs having the covering transformation group Z3p , 2005, J. Comb. Theory, Ser. B.

[10]  David A. Redett invariant subspaces of , 2005 .

[11]  Peter Lorimer,et al.  Vertex-transitive graphs: Symmetric graphs of prime valency , 1984, J. Graph Theory.

[12]  Ying Cheng,et al.  On weakly symmetric graphs of order twice a prime , 1987, J. Comb. Theory, Ser. B.

[13]  D. Djoković,et al.  Automorphisms of graphs and coverings , 1974 .

[14]  W. T. Tutte On the Symmetry of Cubic Graphs , 1959, Canadian Journal of Mathematics.

[15]  Jin Ho Kwak,et al.  Infinitely many finite one-regular graphs of any even valency , 2004, J. Comb. Theory, Ser. B.

[16]  Dragan Marusic,et al.  Maps and Half-transitive Graphs of Valency 4 , 1998, Eur. J. Comb..

[17]  Jin Ho Kwak,et al.  An infinite family of cubic one-regular graphs with unsolvable automorphism groups , 2003, Discret. Math..

[18]  Cheryl E. Praeger,et al.  Remarks on Path-transitivity in Finite Graphs , 1996, Eur. J. Comb..

[19]  Norbert Seifter,et al.  Automorphism Groups of Covering Graphs , 1997, J. Comb. Theory, Ser. B.

[20]  Martin Skoviera,et al.  Which generalized petersen graphs are cayley graphs? , 1995, J. Graph Theory.

[21]  Mingyao Xu,et al.  On semisymmetric cubic graphs of order 6p2 , 2004 .

[22]  Martin Skoviera,et al.  Branched coverings of maps and lifts of map homomorphisms , 1994, Australas. J Comb..

[23]  Yan-Quan Feng,et al.  One-regular cubic graphs of order a small number times a prime or a prime square , 2004, Journal of the Australian Mathematical Society.

[24]  Aleksander Malnič,et al.  Imprimitive groups and graph coverings , 1993 .

[25]  Martin Skoviera,et al.  Lifting Graph Automorphisms by Voltage Assignments , 2000, Eur. J. Comb..

[26]  K. Conrad,et al.  Group Actions , 2018, Cyber Litigation: The Legal Principles.

[27]  Dragan Marušič,et al.  A 1/2-transitive graph of valency 4 with a nonsolvable group of automorphisms , 1997 .

[28]  W. T. Tutte A Non-Hamiltonian Graph , 1960, Canadian Mathematical Bulletin.

[29]  Marston D. E. Conder,et al.  Automorphism groups of symmetric graphs of valency 3 , 1989, J. Comb. Theory, Ser. B.

[30]  B. Huppert Endliche Gruppen I , 1967 .

[31]  Yan-Quan Feng,et al.  s-Regular cubic graphs as coverings of the complete bipartite graph K 3,3 , 2004 .

[32]  Dragan Marusic A Family of One-regular Graphs of Valency 4 , 1997, Eur. J. Comb..

[33]  Yan-Quan Feng,et al.  Classifying cubic symmetric graphs of order 8p or 8p2 , 2005, Eur. J. Comb..

[34]  Norbert Seifter,et al.  Constructing Infinite One-regular Graphs , 1999, Eur. J. Comb..

[35]  Aleksander Malnič,et al.  On Cubic Graphs Admitting an Edge-Transitive Solvable Group , 2004 .

[36]  Primoz Potocnik,et al.  Invariant subspaces, duality, and covers of the Petersen graph , 2006, Eur. J. Comb..

[37]  Adrian O. Waller,et al.  On 2-Arc-Transitive Covers of Complete Graphs , 1998, J. Comb. Theory, Ser. B.

[38]  Mehdi Alaeiyan,et al.  Cubic edge-transitive graphs of order . , 2009 .

[39]  Aleksander Malnič,et al.  Elementary Abelian Covers of Graphs , 2004 .

[40]  Martin Skoviera A contribution to the theory of voltage graphs , 1986, Discret. Math..

[41]  Jonathan L. Gross,et al.  Generating all graph coverings by permutation voltage assignments , 1977, Discret. Math..

[42]  Dragan Marusic,et al.  An infinite family of cubic edge- but not vertex-transitive graphs , 2004, Discret. Math..

[43]  H. Coxeter,et al.  Generators and relations for discrete groups , 1957 .

[44]  Norman Biggs,et al.  Three Remarkable Graphs , 1973, Canadian Journal of Mathematics.

[45]  Ju-Mok Oh,et al.  Construction of one-regular graphs of valency 4 and 6 , 2004, Discret. Math..

[46]  Rob Miller,et al.  The trivalent symmetric graphs of girth at most six , 1971 .

[47]  Yan-Quan Feng,et al.  Constructing an Infinite Family of Cubic 1-Regular Graphs , 2002, Eur. J. Comb..

[48]  Aleksander Malnic,et al.  Group actions, coverings and lifts of automorphisms , 1998, Discret. Math..

[49]  Gary L. Miller,et al.  Regular groups of automorphisms of cubic graphs , 1980, J. Comb. Theory, Ser. B.

[50]  D. Gorenstein Finite Simple Groups: An Introduction to Their Classification , 1982 .

[51]  Jin Ho Kwak,et al.  Linear criteria for lifting automorphisms of elementary abelian regular coverings , 2003 .

[52]  D. Maru,et al.  Symmetries of Hexagonal Molecular Graphs on the Torus , 2000 .