Flight stabilization control of a hovering model insect

SUMMARY The longitudinal stabilization control of a hovering model insect was studied using the method of computational fluid dynamics to compute the stability and control derivatives, and the techniques of eigenvalue and eigenvector analysis and modal decomposition, for solving the equations of motion (morphological and certain kinematical data of hoverflies were used for the model insect). The model insect has the same three natural modes of motion as those reported recently for a hovering bumblebee: one unstable oscillatory mode, one stable fast subsidence mode and one stable slow subsidence mode. Controllability analysis shows that although unstable, the flight is controllable. For stable hovering, the unstable oscillatory mode needs to be stabilized and the slow subsidence mode needs stability augmentation. The former can be accomplished by feeding back pitch attitude, pitch rate and horizontal velocity to produce \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \({\delta}{\bar{{\phi}}}\) \end{document} orδα 2; the latter by feeding back vertical velocity to produce δΦ or δα1 (δΦ, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \({\delta}{\bar{{\phi}}}\) \end{document}, δα1 and δα2 denote control inputs: δΦ and \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \({\delta}{\bar{{\phi}}}\) \end{document} represent changes in stroke amplitude and mean stroke angle, respectively; δα1 represents an equal change whilst δα2 a differential change in the geometrical angles of attack of the downstroke and upstroke).

[1]  A. G. Greenhill Kinematics and Dynamics , 1888, Nature.

[2]  H A Hazen,et al.  THE MECHANICS OF FLIGHT. , 1893, Science.

[3]  Flapping Flight , 1915, Aeronautical journal (London, England : 1897).

[4]  C. Taylor Contribution of Compound Eyes and Ocelli to Steering Of Locusts in Flight: I. Behavioural Analysis , 1981 .

[5]  C. Taylor Contribution of Compound Eyes and Ocelli to Steering of Locusts in Flight: II. Timing Changes in Flight Motor Units , 1981 .

[6]  C. Ellington The Aerodynamics of Hovering Insect Flight. III. Kinematics , 1984 .

[7]  C. Ellington The Aerodynamics of Hovering Insect Flight. II. Morphological Parameters , 1984 .

[8]  C. Ellington The Aerodynamics of Hovering Insect Flight. IV. Aeorodynamic Mechanisms , 1984 .

[9]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[10]  R. Dudley,et al.  Mechanics of Forward Flight in Bumblebees: I. Kinematics and Morphology , 1990 .

[11]  Frank L. Lewis,et al.  Aircraft Control and Simulation , 1992 .

[12]  Arthur E. Bryson,et al.  Control of spacecraft and aircraft , 1994 .

[13]  M. Mizunami,et al.  Functional diversity of neural organization in insect ocellar systems , 1995, Vision Research.

[14]  C. Ellington,et al.  The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight. , 1997, The Journal of experimental biology.

[15]  R. Dudley The Biomechanics of Insect Flight: Form, Function, Evolution , 1999 .

[16]  M. Dickinson,et al.  Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[17]  G K Taylor,et al.  Mechanics and aerodynamics of insect flight control , 2001, Biological reviews of the Cambridge Philosophical Society.

[18]  Mao Sun,et al.  Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. , 2002, The Journal of experimental biology.

[19]  M. Dickinson,et al.  A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster , 2003, Journal of Experimental Biology.

[20]  Adrian L. R. Thomas,et al.  Dynamic flight stability in the desert locust Schistocerca gregaria , 2003, Journal of Experimental Biology.

[21]  Martin Heisenberg,et al.  The three-dimensional optomotor torque system ofDrosophila melanogaster , 1982, Journal of comparative physiology.

[22]  R. Hengstenberg,et al.  The halteres of the blowfly Calliphora , 1994, Journal of Comparative Physiology A.

[23]  Mao Sun,et al.  Dynamic flight stability of a hovering bumblebee , 2005, Journal of Experimental Biology.

[24]  S. Shankar Sastry,et al.  Flapping flight for biomimetic robotic insects: part II-flight control design , 2006, IEEE Transactions on Robotics.

[25]  Graham K. Taylor,et al.  Insect flight dynamics and control , 2006 .