Erbium silicate compound optical waveguide amplifier and laser [Invited]

In the process of information technology, as Moore's law becomes more and more close to the limit, the consensus to combine microelectronics and optoelectronics to develop silicon-based large-scale optoelectronic integration technology is inevitable. As the most important part of silicon photonic devices, a silicon-based light source still attracted great effort. In the traditional research, erbium-doped materials have played an important role in silicon-based light sources. Recent studies demonstrated that the erbium silicate compound had a high net gain attributable to a high erbium concentration that has no insolubility problem. This paper focuses on the theory, designs, simulations, preparation methods, process and device optimizations of the erbium silicate compound optical waveguide amplifier and laser. The erbium silicate compound materials with large optical gains can serve as potential candidates for future silicon-based scale-integrated light-source applications.

[1]  Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires , 2016, Scientific reports.

[2]  X. Duan,et al.  High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band. , 2015, Physical review letters.

[3]  Grégoire Beaudoin,et al.  Recent advances in germanium emission [Invited] , 2013 .

[4]  C. Ning,et al.  Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material , 2013 .

[5]  Martin Kittler,et al.  Germanium tin: silicon photonics toward the mid-infrared , 2013 .

[6]  Li Yu,et al.  Development trends in silicon photonics , 2013 .

[7]  C. Ning,et al.  Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material , 2012 .

[8]  B. Wang,et al.  Near-infrared electroluminescence in ErYb silicate based light-emitting device , 2012 .

[9]  Lei Wang,et al.  Hybrid ${\rm Si}_{3}{\rm N}_{4}\hbox{-}{\rm Er}/{\rm Yb}$ Silicate Waveguides for Amplifier Application , 2012, IEEE Photonics Technology Letters.

[10]  M. Romagnoli,et al.  An electrically pumped germanium laser. , 2012, Optics express.

[11]  Zhiping Zhou,et al.  Optical amplification in Er/Yb silicate slot waveguide. , 2012, Optics letters.

[12]  Y. Arakawa,et al.  III-V/Si hybrid photonic devices by direct fusion bonding , 2012, Scientific Reports.

[13]  C. Ning,et al.  Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength , 2011 .

[14]  B. Wang,et al.  Optical amplification in Er/Yb silicate strip loaded waveguide , 2011 .

[15]  F. Priolo,et al.  Energy transfer and enhanced 1.54 μm emission in Erbium-Ytterbium disilicate thin films. , 2011, Optics express.

[16]  Markus Pollnau,et al.  Erbium‐doped integrated waveguide amplifiers and lasers , 2011 .

[17]  Rui Li,et al.  Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes , 2010 .

[18]  Tadamasa Kimura,et al.  Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide , 2010 .

[19]  Namkyoo Park,et al.  Cooperative upconversion and optical gain in ion-beam sputter-deposited Er(x)Y(2-x)SiO(5) waveguides. , 2010, Optics express.

[20]  J. Michel,et al.  Ge-on-Si laser operating at room temperature. , 2010, Optics letters.

[21]  Bing Wang,et al.  Processing and properties of ytterbium-erbium silicate thin film gain media , 2009, 2009 6th IEEE International Conference on Group IV Photonics.

[22]  F. Priolo,et al.  Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si , 2009 .

[23]  Avi Zadok,et al.  Electrically pumped hybrid evanescent Si/InGaAsP lasers. , 2009, Optics letters.

[24]  G. Qin,et al.  1.53 µm photo- and electroluminescence from Er3+ in erbium silicate , 2009, Journal of Physics: Condensed Matter.

[25]  F. Iacona,et al.  Thermal evolution of Er silicate thin films grown by rf magnetron sputtering , 2008 .

[26]  F. Priolo,et al.  The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films , 2008 .

[27]  Jurgen Michel,et al.  Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. , 2007, Optics express.

[28]  Maria Miritello,et al.  Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films , 2007 .

[29]  Ke Liu,et al.  Modeling and experiments of packaged Er3+-Yb3+ co-doped glass waveguide amplifiers , 2007 .

[30]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[31]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[32]  F. Cussó,et al.  Modelling of Tm3+-doped LiNbO3 Waveguide Lasers , 2006 .

[33]  John Bowers,et al.  Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. , 2005, Optics express.

[34]  Anthony J. Kenyon,et al.  Erbium in silicon , 2005 .

[35]  Lars Rebohle,et al.  Bright green electroluminescence from Tb3+ in silicon metal-oxide-semiconductor devices , 2005 .

[36]  Tadamasa Kimura,et al.  Erbium–Silicon–Oxide crystalline films prepared by MOMBE , 2005 .

[37]  Alexander Fang,et al.  An all-silicon Raman laser , 2005, Nature.

[38]  M. D. Dood,et al.  Self-assembled infrared-luminescent Er–Si–O crystallites on silicon , 2004 .

[39]  Maria Eloisa Castagna,et al.  High efficiency light emitting devices in silicon , 2003 .

[40]  F. Priolo,et al.  Sensitizing properties of amorphous Si clusters on the 1.54-μm luminescence of Er in Si-rich SiO2 , 2003 .

[41]  Pieter G. Kik,et al.  Exciton–erbium interactions in Si nanocrystal-doped SiO2 , 2000 .

[42]  S. Safavi-Naeini,et al.  Yb3+sensitized Er3+-doped waveguide amplifiers: a theoretical approach , 1998 .

[43]  R. Carius,et al.  Hot electron impact excitation cross-section of Er3+ and electroluminescence from erbium-implanted silicon metal-oxide-semiconductor tunnel diodes , 1997 .

[44]  Harry A. Atwater,et al.  INTERBAND TRANSITIONS IN SNXGE1-X ALLOYS , 1997 .

[45]  T. R. Gosnell,et al.  Uniform upconversion in high-concentration Er(3+)-doped soda lime silicate and aluminosilicate glasses. , 1997, Optics letters.

[46]  Nobuyoshi Koshida,et al.  Visible electroluminescence from porous silicon , 1992 .