Ca2+ and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal

[1]  Takeshi Sakaba,et al.  Multiple Roles of Calcium Ions in the Regulation of Neurotransmitter Release , 2008, Neuron.

[2]  David T. Yue,et al.  Mechanism of Local and Global Ca2+ Sensing by Calmodulin in Complex with a Ca2+ Channel , 2008, Cell.

[3]  T. A. Ryan,et al.  Calcium Control of Endocytic Capacity at a CNS Synapse , 2008, The Journal of Neuroscience.

[4]  M. Malmierca,et al.  The medial nucleus of the trapezoid body: Comparative physiology , 2008, Neuroscience.

[5]  T. A. Ryan,et al.  Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode , 2007, Proceedings of the National Academy of Sciences.

[6]  H. von Gersdorff,et al.  Synaptic vesicle endocytosis at a CNS nerve terminal: faster kinetics at physiological temperatures and increased endocytotic capacity during maturation. , 2007, Journal of neurophysiology.

[7]  M. Cousin,et al.  Activity‐dependent control of bulk endocytosis by protein dephosphorylation in central nerve terminals , 2007, The Journal of physiology.

[8]  T. Südhof,et al.  A dual-Ca2+-sensor model for neurotransmitter release in a central synapse , 2007, Nature.

[9]  L. Lagnado,et al.  Modes of Vesicle Retrieval at Ribbon Synapses, Calyx-Type Synapses, and Small Central Synapses , 2007, The Journal of Neuroscience.

[10]  Wei Wu,et al.  Rapid bulk endocytosis and its kinetics of fission pore closure at a central synapse , 2007, Proceedings of the National Academy of Sciences.

[11]  T. Südhof,et al.  Synaptotagmin-1, -2, and -9: Ca2+ Sensors for Fast Release that Specify Distinct Presynaptic Properties in Subsets of Neurons , 2007, Neuron.

[12]  K. Gillis,et al.  The Origin of Quantal Size Variation: Vesicular Glutamate Concentration Plays a Significant Role , 2007, The Journal of Neuroscience.

[13]  Leon Lagnado,et al.  Clathrin-Mediated Endocytosis Is the Dominant Mechanism of Vesicle Retrieval at Hippocampal Synapses , 2006, Neuron.

[14]  Kira E. Poskanzer,et al.  Discrete Residues in the C2B Domain of Synaptotagmin I Independently Specify Endocytic Rate and Synaptic Vesicle Size , 2006, Neuron.

[15]  H. von Gersdorff,et al.  Physiological Temperatures Reduce the Rate of Vesicle Pool Depletion and Short-Term Depression via an Acceleration of Vesicle Recruitment , 2006, The Journal of Neuroscience.

[16]  Jianhua Xu,et al.  Activity-Dependent Acceleration of Endocytosis at a Central Synapse , 2005, The Journal of Neuroscience.

[17]  L. Lagnado,et al.  Clathrin-Dependent and Clathrin-Independent Retrieval of Synaptic Vesicles in Retinal Bipolar Cells , 2005, Neuron.

[18]  Jianhua Xu,et al.  The Decrease in the Presynaptic Calcium Current Is a Major Cause of Short-Term Depression at a Calyx-Type Synapse , 2005, Neuron.

[19]  Toshihide Hige,et al.  Vesicle Endocytosis Requires Dynamin-Dependent GTP Hydrolysis at a Fast CNS Synapse , 2005, Science.

[20]  T. A. Ryan,et al.  Kinetic efficiency of endocytosis at mammalian CNS synapses requires synaptotagmin I. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Silvio O Rizzoli,et al.  The Structural Organization of the Readily Releasable Pool of Synaptic Vesicles , 2004, Science.

[22]  C. Stevens,et al.  Three modes of synaptic vesicular recycling revealed by single-vesicle imaging , 2003, Nature.

[23]  L. Lagnado,et al.  Bulk Membrane Retrieval in the Synaptic Terminal of Retinal Bipolar Cells , 2003, The Journal of Neuroscience.

[24]  Bert Sakmann,et al.  Three-Dimensional Reconstruction of a Calyx of Held and Its Postsynaptic Principal Neuron in the Medial Nucleus of the Trapezoid Body , 2002, The Journal of Neuroscience.

[25]  L. Lagnado,et al.  Calcium influx selects the fast mode of endocytosis in the synaptic terminal of retinal bipolar cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Thomas Voets,et al.  Calcium Dependence of Exocytosis and Endocytosis at the Cochlear Inner Hair Cell Afferent Synapse , 2001, Neuron.

[27]  T. A. Ryan,et al.  Calcium accelerates endocytosis of vSNAREs at hippocampal synapses , 2001, Nature Neuroscience.

[28]  Ege T. Kavalali,et al.  Rapid Reuse of Readily Releasable Pool Vesicles at Hippocampal Synapses , 2000, Neuron.

[29]  C. Guatimosim,et al.  Two Endocytic Recycling Routes Selectively Fill Two Vesicle Pools in Frog Motor Nerve Terminals , 2000, Neuron.

[30]  T. A. Ryan,et al.  Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system , 2000, Nature Cell Biology.

[31]  C. Stevens,et al.  Reversal of synaptic vesicle docking at central synapses , 1999, Nature Neuroscience.

[32]  L. Brodin,et al.  Dissociation between Ca2+-Triggered Synaptic Vesicle Exocytosis and Clathrin-Mediated Endocytosis at a Central Synapse , 1998, Neuron.

[33]  P. Robinson,et al.  Ba2+ does not support synaptic vesicle retrieval in rat cerebrocortical synaptosomes , 1998, Neuroscience Letters.

[34]  H. McMahon,et al.  Calcium triggers calcineurin-dependent synaptic vesicle recycling in mammalian nerve terminals , 1998, Current Biology.

[35]  P. Nucifora,et al.  Barium triggers rapid endocytosis in calf adrenal chromaffin cells , 1998, The Journal of physiology.

[36]  E. Neher,et al.  Multiple Forms of Endocytosis In Bovine Adrenal Chromaffin Cells , 1997, The Journal of cell biology.

[37]  Stephen J. Smith,et al.  Optical detection of a quantal presynaptic membrane turnover , 1997, Nature.

[38]  B. Sakmann,et al.  Calcium influx and transmitter release in a fast CNS synapse , 1996, Nature.

[39]  W. Betz,et al.  Nerve Activity but Not Intracellular Calcium Determines the Time Course of Endocytosis at the Frog Neuromuscular Junction , 1996, Neuron.

[40]  H. Palfrey,et al.  Calmodulin Is the Divalent Cation Receptor for Rapid Endocytosis, but Not Exocytosis, in Adrenal Chromaffin Cells , 1996, Neuron.

[41]  W. Betz,et al.  Monitoring of Black Widow Spider Venom (BWSV) induced exo- and endocytosis in living frog motor nerve terminals with FM1-43 , 1995, Neuropharmacology.

[42]  M. McNiven,et al.  Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP, and dynamin but not clathrin. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. Tsien,et al.  Presynaptic component of long-term potentiation visualized at individual hippocampal synapses. , 1995, Science.

[44]  Gary Matthews,et al.  Inhibition of endocytosis by elevated internal calcium in a synaptic terminal , 1994, Nature.

[45]  R. Kelly,et al.  Intermediates in synaptic vesicle recycling revealed by optical imaging of Drosophila neuromuscular junctions , 1994, Neuron.

[46]  W. Almers,et al.  A triggered mechanism retrieves membrane in seconds after Ca(2+)- stimulated exocytosis in single pituitary cells , 1994, The Journal of cell biology.

[47]  E Neher,et al.  Calcium requirements for secretion in bovine chromaffin cells. , 1992, The Journal of physiology.

[48]  A. Mazur,et al.  Ca2+-dependent recycling of synaptic vesicles at the frog neuromuscular junction , 1980, The Journal of cell biology.

[49]  Jianhua Xu,et al.  GTP-independent rapid and slow endocytosis at a central synapse , 2008, Nature Neuroscience.

[50]  J. Borst,et al.  Short-term plasticity at the calyx of held , 2002, Nature Reviews Neuroscience.