Initial mass function of intermediate-mass black hole seeds

We study the initial mass function (IMF) and hosting halo properties of intermediate-mass black holes (IMBHs, 104-6 M⊙) formed inside metal-free, UV-illuminated atomic-cooling haloes (virial temperature Tvir ≥ 104 K) either via the direct collapse of the gas or via an intermediate supermassive star (SMS) stage. These IMBHs have been recently advocated as the seeds of the supermassive black holes observed at z ≈ 6. We achieve this goal in three steps: (a) we derive the gas accretion rate for a proto-SMS to undergo General Relativity instability and produce a direct collapse black hole (DCBH) or to enter the zero-age main sequence and later collapse into an IMBH; (b) we use merger-tree simulations to select atomic-cooling haloes in which either a DCBH or SMS can form and grow, accounting for metal enrichment and major mergers that halt the growth of the proto-SMS by gas fragmentation. We derive the properties of the hosting haloes and the mass distribution of black holes at this stage, and dub it the `birth mass function'; (c) we follow the further growth of the DCBH by accreting the leftover gas in the parent halo and compute the final IMBH mass. We consider two extreme cases in which minihaloes (Tvir <104 K) can (fertile) or cannot (sterile) form stars and pollute their gas leading to a different IMBH IMF. In the (fiducial) fertile case, the IMF is bimodal extending over a broad range of masses, M ≈ (0.5-20) × 105 M⊙, and the DCBH accretion phase lasts from 10 to 100 Myr. If minihaloes are sterile, the IMF spans the narrower mass range M ≈ (1-2.8) × 106 M⊙, and the DCBH accretion phase is more extended (70-120 Myr). We conclude that a good seeding prescription is to populate haloes (a) of mass 7.5

[1]  R. Salvaterra,et al.  The brief era of direct collapse black hole formation , 2014, 1402.5675.

[2]  W. Schmidt,et al.  Magnetic fields during the formation of supermassive black holes , 2013, 1310.3680.

[3]  S. Zaroubi,et al.  Metals and ionizing photons from dwarf galaxies , 2013, 1309.7058.

[4]  L. Verde,et al.  Overcooled haloes at z ≥ 10: a route to form low-mass first stars , 2013, 1307.1295.

[5]  L. Mayer,et al.  Massive black hole seeds born via direct gas collapse in galaxy mergers: their properties, statistics and environment , 2012, 1211.3752.

[6]  W. Schmidt,et al.  The characteristic black hole mass resulting from direct collapse in the early Universe , 2013, 1309.1097.

[7]  N. Yoshida,et al.  FORMATION OF PRIMORDIAL SUPERMASSIVE STARS BY RAPID MASS ACCRETION , 2013, 1308.4457.

[8]  G. Chiaki,et al.  ONE HUNDRED FIRST STARS: PROTOSTELLAR EVOLUTION AND THE FINAL MASSES , 2013, 1308.4456.

[9]  J. Greene,et al.  DWARF GALAXIES WITH OPTICAL SIGNATURES OF ACTIVE MASSIVE BLACK HOLES , 2013, 1308.0328.

[10]  Can supermassive black hole seeds form in galaxy mergers , 2013, 1306.6635.

[11]  M. Norman,et al.  POPULATION III STARS AND REMNANTS IN HIGH-REDSHIFT GALAXIES , 2013, 1305.1325.

[12]  Caltech,et al.  Formation and coalescence of cosmological supermassive-black-hole binaries in supermassive-star collapse. , 2013, Physical review letters.

[13]  W. Schmidt,et al.  Black hole formation in the early Universe , 2013, 1304.0962.

[14]  P. Madau,et al.  A POPULATION OF RELIC INTERMEDIATE-MASS BLACK HOLES IN THE HALO OF THE MILKY WAY , 2013, 1303.3929.

[15]  A. Finoguenov,et al.  CROSS-CORRELATING COSMIC INFRARED AND X-RAY BACKGROUND FLUCTUATIONS: EVIDENCE OF SIGNIFICANT BLACK HOLE POPULATIONS AMONG THE CIB SOURCES , 2012, 1210.5302.

[16]  R. Salvaterra,et al.  The contribution of high-redshift galaxies to the near-infrared background , 2012, 1208.6234.

[17]  S. Khochfar,et al.  The First Billion Years project: the impact of stellar radiation on the co-evolution of Populations II and III , 2012, 1206.5824.

[18]  A. Finoguenov,et al.  M ay 2 01 3 Cross-correlating cosmic IR and X-ray background fluctuations : evidence of significant black hole populations among the CIB sources , 2013 .

[19]  D. Holz,et al.  SUPERMASSIVE SEEDS FOR SUPERMASSIVE BLACK HOLES , 2012, 1211.0548.

[20]  N. Yoshida,et al.  PROTOSTELLAR FEEDBACK AND FINAL MASS OF THE SECOND-GENERATION PRIMORDIAL STARS , 2012, 1210.3035.

[21]  Jillian Bellovary,et al.  Black holes in the early Universe , 2012, Reports on progress in physics. Physical Society.

[22]  M. Davies,et al.  AN UPPER LIMIT TO THE VELOCITY DISPERSION OF RELAXED STELLAR SYSTEMS WITHOUT MASSIVE BLACK HOLES , 2012, 1206.6167.

[23]  M. Livio,et al.  Ubiquitous seeding of supermassive black holes by direct collapse , 2012, 1205.6464.

[24]  R. Perna,et al.  X-ray emission from high-redshift miniquasars: self-regulating the population of massive black holes through global warming , 2012, 1205.6467.

[25]  F. Walter,et al.  Evidence of strong quasar feedback in the early Universe , 2012, 1204.2904.

[26]  H. Yorke,et al.  RAPIDLY ACCRETING SUPERGIANT PROTOSTARS: EMBRYOS OF SUPERMASSIVE BLACK HOLES? , 2012, 1203.2613.

[27]  A. Petri,et al.  Supermassive black hole ancestors , 2012, 1202.3141.

[28]  C. Tout,et al.  Quasi-stars, giants and the Schönberg-Chandrasekhar limit , 2012, 1201.5560.

[29]  M. Colpi,et al.  High‐redshift formation and evolution of central massive objects – II. The census of BH seeds , 2012, 1201.3761.

[30]  R. Klessen,et al.  THE FIRST GALAXIES: ASSEMBLY WITH BLACK HOLE FEEDBACK , 2011, 1111.6305.

[31]  KwangHo Park,et al.  ACCRETION ONTO BLACK HOLES FROM LARGE SCALES REGULATED BY RADIATIVE FEEDBACK. III. ENHANCED LUMINOSITY OF INTERMEDIATE-MASS BLACK HOLES MOVING AT SUPERSONIC SPEEDS , 2011, 1110.4634.

[32]  H. Janka,et al.  RELATIVISTIC COLLAPSE AND EXPLOSION OF ROTATING SUPERMASSIVE STARS WITH THERMONUCLEAR EFFECTS , 2011, 1108.3090.

[33]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[34]  M. Davies,et al.  SUPERMASSIVE BLACK HOLE FORMATION VIA GAS ACCRETION IN NUCLEAR STELLAR CLUSTERS , 2011, 1106.5943.

[35]  Volker Springel,et al.  SIMULATIONS ON A MOVING MESH: THE CLUSTERED FORMATION OF POPULATION III PROTOSTARS , 2011, 1101.5491.

[36]  R. Klessen,et al.  THE EFFECT OF DUST COOLING ON LOW-METALLICITY STAR-FORMING CLOUDS , 2011, 1101.4891.

[37]  S. White,et al.  Galaxy Formation and Evolution , 2010 .

[38]  M. Volonteri,et al.  Quasi‐stars and the cosmic evolution of massive black holes , 2010, 1003.5220.

[39]  L. Mayer,et al.  Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers , 2009, Nature.

[40]  Z. Haiman,et al.  Supermassive black hole formation by direct collapse: keeping protogalactic gas H2 free in dark matter haloes with virial temperatures Tvir > rsim 104 K , 2009, 0906.4773.

[41]  M. Begelman Evolution of supermassive stars as a pathway to black hole formation , 2009, 0910.4398.

[42]  M. Stiavelli,et al.  FORMATION RATES OF POPULATION III STARS AND CHEMICAL ENRICHMENT OF HALOS DURING THE REIONIZATION ERA , 2009, 0901.0711.

[43]  M. Haehnelt,et al.  Pathways to massive black holes and compact star clusters in pre-galactic dark matter haloes with virial temperatures ≳10 000 K , 2008, 0810.2802.

[44]  A. Ferrara,et al.  Ultra faint dwarfs: probing early cosmic star formation , 2008, 0812.3151.

[45]  Z. Haiman,et al.  Fluctuations in the high-redshift Lyman–Werner background: close halo pairs as the origin of supermassive black holes , 2008, 0810.0014.

[46]  N. Yoshida,et al.  The First Galaxies , 2008, Proceedings of the International Astronomical Union.

[47]  Z. Haiman,et al.  Can Supermassive Black Holes Form in Metal-enriched High-Redshift Protogalaxies? , 2008, 0804.3141.

[48]  P. Shapiro,et al.  THE INHOMOGENEOUS BACKGROUND OF H2-DISSOCIATING RADIATION DURING COSMIC REIONIZATION , 2008, 0807.2254.

[49]  P. Armitage,et al.  Quasi-stars: accreting black holes inside massive envelopes , 2007, 0711.4078.

[50]  A. Ferrara Cosmological Feedbacks from the First Stars , 2008 .

[51]  P. Natarajan,et al.  The evolution of massive black hole seeds , 2007, 0709.0529.

[52]  R. Schneider,et al.  Population III stars: hidden or disappeared? , 2007, 0707.1433.

[53]  Astronomy,et al.  The mass function of high-redshift seed black holes , 2007, astro-ph/0702340.

[54]  M. Peimbert,et al.  Revised Primordial Helium Abundance Based on New Atomic Data , 2007, astro-ph/0701580.

[55]  R. Schneider,et al.  Cosmic stellar relics in the Galactic halo , 2006, astro-ph/0611130.

[56]  Cambridge,et al.  Supermassive black hole formation during the assembly of pre-galactic discs , 2006, astro-ph/0606159.

[57]  R. Barkana,et al.  The first stars in the Universe , 2006, astro-ph/0604050.

[58]  K. Omukai,et al.  Fragmentation of star-forming clouds enriched with the first dust , 2006, astro-ph/0603766.

[59]  M. Rees,et al.  Formation of supermassive black holes by direct collapse in pre-galactic haloes , 2006, astro-ph/0602363.

[60]  Y. Shchekinov,et al.  Formation of HD molecules in merging dark matter haloes , 2005, astro-ph/0505619.

[61]  K. Omukai,et al.  Thermal and Fragmentation Properties of Star-forming Clouds in Low-Metallicity Environments , 2005, astro-ph/0503010.

[62]  Tucson,et al.  Rosseland and Planck mean opacities for primordial matter , 2004, astro-ph/0411613.

[63]  A. Maselli,et al.  CRASH: A radiative transfer scheme , 2003, astro-ph/0307117.

[64]  S. Shapiro,et al.  Collapse of a Rotating Supermassive Star to a Supermassive Black Hole: Analytic Determination of the Black Hole Mass and Spin , 2002, astro-ph/0209251.

[65]  H. Janka Supermassive Stars: Fact or Fiction? , 2002, astro-ph/0202028.

[66]  M. Gilfanov,et al.  Lighthouses of the universe : the most luminous celestial objects and their use for cosmology : proceedings of the MPA/ESO/MPE/USM Joint Astronomy Conference held in Garching, Germany, 6-10 August 2001 , 2002 .

[67]  K. Omukai,et al.  First Stars, Very Massive Black Holes, and Metals , 2001, astro-ph/0111341.

[68]  P. Coppi,et al.  The Fragmentation of Pre-enriched Primordial Objects , 2001, astro-ph/0104271.

[69]  M. Rees,et al.  Early Metal Enrichment of the Intergalactic Medium by Pregalactic Outflows , 2000, astro-ph/0010158.

[70]  R. Kudritzki,et al.  Generic Spectrum and Ionization Efficiency of a Heavy Initial Mass Function for the First Stars , 2000, astro-ph/0007248.

[71]  G. Bryan,et al.  Simulations of Pregalactic Structure Formation with Radiative Feedback , 2000, astro-ph/0007198.

[72]  Martin J. Rees,et al.  Reionization of the Inhomogeneous Universe , 1998, astro-ph/9812306.

[73]  S. Shapiro,et al.  Evolution of Rotating Supermassive Stars to the Onset of Collapse , 1999, astro-ph/9909237.

[74]  D. Eisenstein,et al.  Origin of quasar progenitors from the collapse of low spin cosmological perturbations , 1994, astro-ph/9401016.

[75]  A. Loeb,et al.  Collapse of primordial gas clouds and the formation of quasar black holes , 1994, astro-ph/9401026.

[76]  N. Kaneko,et al.  Optically thick accretion onto black holes , 1975 .

[77]  S. Chandrasekhar The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity. , 1964 .

[78]  I. Iben Massive stars in quasi-static equilibrium. , 1963 .

[79]  Martin Schwarzschild,et al.  Structure and evolution of the stars. , 1958 .