k-integrals and k-Lie symmetries in discrete dynamical systems

We generalize the concept of symplectic maps to that of k- symplectic maps: maps whose kth iterates are symplectic. Similarly, k-symmetries and k-integrals are symmetries (resp. integrals) of the kth iterate of the map. It is shown that k-symmetries and k-integrals are related by the k-symplectic structure, as in the k = 1 continuous case (Noether's theorem). Examples are given of k-integrals and their related k-symmetries for k = 1,…,4.

[1]  Mark J. Ablowitz,et al.  A Nonlinear Difference Scheme and Inverse Scattering , 1976 .

[2]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[3]  G. R. W. Quispel,et al.  Linear integral equations and nonlinear difference-difference equations , 1984 .

[4]  D. Levi,et al.  Continuous Symmetries of Differential-Difference Equations , 1995 .

[5]  J. Meiss Symplectic maps, variational principles, and transport , 1992 .

[6]  J. Logan First integrals in the discrete variational calculus , 1972 .

[7]  C. Thompson,et al.  Integrable mappings and soliton equations II , 1989 .

[8]  A note on non-Noether constants of motion , 1983 .

[9]  R. Hirota Discrete Analogue of a Generalized Toda Equation , 1981 .

[10]  Franco Magri,et al.  A Simple model of the integrable Hamiltonian equation , 1978 .

[11]  Ryogo Hirota,et al.  Nonlinear Partial Difference Equations III; Discrete Sine-Gordon Equation , 1977 .

[12]  G. R. W. Quispel,et al.  Reversing k-symmetries in dynamical systems , 1994 .

[13]  Choquet Bruhat,et al.  Analysis, Manifolds and Physics , 1977 .

[14]  P. Santini,et al.  Integrable symplectic maps , 1991 .

[15]  C. Thompson,et al.  Integrable mappings and soliton equations , 1988 .

[16]  H. Capel,et al.  Integrable mappings and nonlinear integrable lattice equations , 1990 .

[17]  A geometric treatment of reduction of order of ordinary difference equations , 1995 .

[18]  Y. Suris Discrete time generalized Toda lattices: Complete integrability and relation with relativistic Toda lattices , 1990 .

[19]  G. R. W. Quispel,et al.  Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems , 1992 .

[20]  D. Levi,et al.  Continuous symmetries of discrete equations , 1991 .

[21]  Y. Suris A discrete-time Garnier system , 1994 .

[22]  M. Ablowitz,et al.  On the solution of a class of nonlinear partial di erence equations , 1977 .

[23]  G. Quispel,et al.  Cyclic reversing k-symmetry groups , 1995 .

[24]  Ryogo Hirota,et al.  Nonlinear Partial Difference Equations. : I. A Difference Analogue of the Korteweg-de Vries Equation , 1977 .

[25]  Athanassios S. Fokas,et al.  Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .

[26]  M. Feigenbaum,et al.  Universal Behaviour in Families of Area-Preserving Maps , 1981, Hamiltonian Dynamical Systems.

[27]  A. Ramani,et al.  Isomonodromic deformation problems for discrete analogues of Painlevé equations , 1992 .

[28]  G. Quispel,et al.  Factorizable Lie symmetries and the linearization of difference equations , 1995 .

[29]  Shigeru Maeda,et al.  The Similarity Method for Difference Equations , 1987 .

[30]  Charles-Michel Marle,et al.  Symplectic geometry and analytical mechanics , 1987 .