k-integrals and k-Lie symmetries in discrete dynamical systems
暂无分享,去创建一个
G. R. W. Quispel | G. Quispel | H. Capel | H. W. Capel | F. Haggar | G. Byrnes | G. B. Byrnes | F. A. Haggar
[1] Mark J. Ablowitz,et al. A Nonlinear Difference Scheme and Inverse Scattering , 1976 .
[2] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[3] G. R. W. Quispel,et al. Linear integral equations and nonlinear difference-difference equations , 1984 .
[4] D. Levi,et al. Continuous Symmetries of Differential-Difference Equations , 1995 .
[5] J. Meiss. Symplectic maps, variational principles, and transport , 1992 .
[6] J. Logan. First integrals in the discrete variational calculus , 1972 .
[7] C. Thompson,et al. Integrable mappings and soliton equations II , 1989 .
[8] A note on non-Noether constants of motion , 1983 .
[9] R. Hirota. Discrete Analogue of a Generalized Toda Equation , 1981 .
[10] Franco Magri,et al. A Simple model of the integrable Hamiltonian equation , 1978 .
[11] Ryogo Hirota,et al. Nonlinear Partial Difference Equations III; Discrete Sine-Gordon Equation , 1977 .
[12] G. R. W. Quispel,et al. Reversing k-symmetries in dynamical systems , 1994 .
[13] Choquet Bruhat,et al. Analysis, Manifolds and Physics , 1977 .
[14] P. Santini,et al. Integrable symplectic maps , 1991 .
[15] C. Thompson,et al. Integrable mappings and soliton equations , 1988 .
[16] H. Capel,et al. Integrable mappings and nonlinear integrable lattice equations , 1990 .
[17] A geometric treatment of reduction of order of ordinary difference equations , 1995 .
[18] Y. Suris. Discrete time generalized Toda lattices: Complete integrability and relation with relativistic Toda lattices , 1990 .
[19] G. R. W. Quispel,et al. Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems , 1992 .
[20] D. Levi,et al. Continuous symmetries of discrete equations , 1991 .
[21] Y. Suris. A discrete-time Garnier system , 1994 .
[22] M. Ablowitz,et al. On the solution of a class of nonlinear partial di erence equations , 1977 .
[23] G. Quispel,et al. Cyclic reversing k-symmetry groups , 1995 .
[24] Ryogo Hirota,et al. Nonlinear Partial Difference Equations. : I. A Difference Analogue of the Korteweg-de Vries Equation , 1977 .
[25] Athanassios S. Fokas,et al. Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .
[26] M. Feigenbaum,et al. Universal Behaviour in Families of Area-Preserving Maps , 1981, Hamiltonian Dynamical Systems.
[27] A. Ramani,et al. Isomonodromic deformation problems for discrete analogues of Painlevé equations , 1992 .
[28] G. Quispel,et al. Factorizable Lie symmetries and the linearization of difference equations , 1995 .
[29] Shigeru Maeda,et al. The Similarity Method for Difference Equations , 1987 .
[30] Charles-Michel Marle,et al. Symplectic geometry and analytical mechanics , 1987 .