Parallel realization for self-tuning interval type-2 fuzzy controller

In this study, we propose the self-tuning interval type-2 fuzzy proportional derivative plus proportional integral (STIT2FPD+PI) controller, which consists of two fuzzy processors. The first is the IT2FPD+PI controller, which is a parallel combination of the IT2FPD controller and the IT2FPI controller and it is used as the main controller. The second is the tuning mechanism, which is a type-1 fuzzy logic system (T1FLS) that used as parameters tuning. The tuning mechanism generates the updating factors that update the output scaling factors (SFs), the output membership functions (MFs) and the degree of uncertainty for the input MFs. The proposed STIT2FPD+PI controller is implemented practically based on a microcontroller for controlling the overhead crane system. The test is established using the hardware-in-the-loop (HIL) simulation. The practical results show that the proposed STIT2FPD+PI controller improves significantly the performance over a wide range of system uncertainties.

[1]  Rajani K. Mudi,et al.  A robust self-tuning scheme for PI- and PD-type fuzzy controllers , 1999, IEEE Trans. Fuzzy Syst..

[2]  Engin Yesil,et al.  Interval type-2 fuzzy inverse controller design in nonlinear IMC structure , 2011, Eng. Appl. Artif. Intell..

[3]  Ahmad M. El-Nagar,et al.  Derivation and stability analysis of the analytical structures of the interval type-2 fuzzy PID controller , 2014, Appl. Soft Comput..

[4]  Ahmad M. El-Nagar,et al.  Interval type-2 fuzzy neural network controller for a multivariable anesthesia system based on a hardware-in-the-loop simulation , 2014, Artif. Intell. Medicine.

[5]  Tzyy-Chyang Lu,et al.  Genetic-algorithm-based type reduction algorithm for interval type-2 fuzzy logic controllers , 2015, Eng. Appl. Artif. Intell..

[6]  Ahmad M. El-Nagar,et al.  Direct adaptive interval type-2 fuzzy logic controller for the multivariable anaesthesia system , 2011 .

[7]  Oscar Castillo,et al.  Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms , 2011, Soft Comput..

[8]  Yi-Min Li,et al.  Type-2 T–S fuzzy impulsive control of nonlinear systems , 2012 .

[9]  Oscar Castillo,et al.  A generalized type-2 fuzzy granular approach with applications to aerospace , 2016, Inf. Sci..

[10]  Oscar Castillo,et al.  Generalized Type-2 Fuzzy Systems for controlling a mobile robot and a performance comparison with Interval Type-2 and Type-1 Fuzzy Systems , 2015, Expert Syst. Appl..

[11]  Jerry Mendel,et al.  Type-2 Fuzzy Sets and Systems: An Overview [corrected reprint] , 2007, IEEE Computational Intelligence Magazine.

[12]  Y. Wang,et al.  A Type-2 Fuzzy Switching Control System for Biped Robots , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[13]  Oscar Castillo,et al.  Type-2 fuzzy logic aggregation of multiple fuzzy controllers for airplane flight control , 2015, Inf. Sci..

[14]  Nohé R. Cázarez-Castro,et al.  Designing Type-1 and Type-2 Fuzzy Logic Controllers via Fuzzy Lyapunov Synthesis for nonsmooth mechanical systems , 2012, Eng. Appl. Artif. Intell..

[15]  Hani Hagras,et al.  A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[16]  Ahmad M. El-Nagar,et al.  Embedded intelligent adaptive PI controller for an electromechanical system. , 2016, ISA transactions.

[17]  Dongrui Wu,et al.  Approaches for Reducing the Computational Cost of Interval Type-2 Fuzzy Logic Systems: Overview and Comparisons , 2013, IEEE Transactions on Fuzzy Systems.

[18]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[19]  Oscar Castillo,et al.  Embedding a high speed interval type-2 fuzzy controller for a real plant into an FPGA , 2012, Appl. Soft Comput..

[20]  Jerry M. Mendel,et al.  Interval Type-2 Fuzzy Logic Systems Made Simple , 2006, IEEE Transactions on Fuzzy Systems.

[21]  Jerry M. Mendel,et al.  Type-2 fuzzy sets and systems: an overview , 2007, IEEE Computational Intelligence Magazine.

[22]  Xin Chen,et al.  Interval type-2 fuzzy kernel based support vector machine algorithm for scene classification of humanoid robot , 2014, Soft Comput..

[23]  MelinPatricia,et al.  Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot , 2012 .

[24]  Jan Jantzen,et al.  Foundations of fuzzy control , 2007 .

[25]  Fevrier Valdez,et al.  Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot , 2012, Inf. Sci..

[26]  Han-Xiong Li,et al.  Conventional fuzzy control and its enhancement , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[27]  Türkay Dereli,et al.  Industrial applications of type-2 fuzzy sets and systems: A concise review , 2011, Comput. Ind..

[28]  Jianqiang Yi,et al.  Design of Combining Sliding Mode Controller for Overhead Crane Systems , 2013 .

[29]  Ahmad M. El-Nagar,et al.  Hardware-in-the-loop simulation of interval type-2 fuzzy PD controller for uncertain nonlinear system using low cost microcontroller , 2016 .

[30]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems: type-reduction , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[31]  Tarek Tutunji,et al.  Hardware-In-the-Loop for on-line identification and control of three-phase squirrel cage induction motors , 2010, Simul. Model. Pract. Theory.

[32]  Ahmad M. El-Nagar,et al.  Simplified interval type-2 fuzzy logic system based on new type-reduction , 2014, J. Intell. Fuzzy Syst..

[33]  Ahmad M. El-Nagar,et al.  Practical Realization for the Interval Type-2 Fuzzy PD+I Controller Using a Low-Cost Microcontroller , 2014 .

[34]  Hani Hagras,et al.  An Incremental Adaptive Life Long Learning Approach for Type-2 Fuzzy Embedded Agents in Ambient Intelligent Environments , 2007, IEEE Transactions on Fuzzy Systems.

[35]  Oscar Montiel,et al.  Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic , 2007, Inf. Sci..

[36]  Ahmad M. El-Nagar,et al.  Practical Implementation for the interval type-2 fuzzy PID controller using a low cost microcontroller , 2014 .

[37]  Oscar Castillo,et al.  Review of Recent Type-2 Fuzzy Controller Applications , 2016, Algorithms.

[38]  Ahmad M. El-Nagar,et al.  Intelligent control for nonlinear inverted pendulum based on interval type-2 fuzzy PD controller , 2014 .

[39]  Ahmad M. El-Nagar,et al.  Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system. , 2014, ISA transactions.

[40]  Ahmad M. El-Nagar,et al.  Interval Type-2 Fuzzy PID Controller: Analytical Structures and Stability Analysis , 2014 .

[41]  Oscar Castillo,et al.  Optimal design of interval type 2 fuzzy controllers based on a simple tuning algorithm , 2014, Appl. Soft Comput..

[42]  Ahmad M. El-Nagar,et al.  INTERVAL TYPE-2 FUZZY LOGIC CONTROL FOR THE MULTIVARIABLE ANAESTHESIA SYSTEM , 2010 .

[43]  Jerry M. Mendel,et al.  On KM Algorithms for Solving Type-2 Fuzzy Set Problems , 2013, IEEE Transactions on Fuzzy Systems.

[44]  Juan R. Castro,et al.  A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems , 2016, Inf. Sci..