Stability of constant steady states of a chemotaxis model

The Cauchy problem for the parabolic–elliptic Keller–Segel system in the whole n-dimensional space is studied. For this model, every constant $$A \in {\mathbb {R}}$$ A ∈ R is a stationary solution. The main goal of this work is to show that $$A < 1$$ A < 1 is a stable steady state while $$A > 1$$ A > 1 is unstable. Uniformly local Lebesgue spaces are used in order to deal with solutions that do not decay at spatial variable on the unbounded domain.

[1]  J. Cholewa,et al.  LINEAR PARABOLIC EQUATIONS IN LOCALLY UNIFORM SPACES , 2004 .

[2]  M. Winkler How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases , 2018, Mathematische Annalen.

[3]  Ignacio Guerra,et al.  Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane , 2014, 1401.7650.

[4]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[5]  G. Karch,et al.  Spikes and diffusion waves in a one-dimensional model of chemotaxis , 2010, 1008.0020.

[6]  A. Raczynski Diffusion-dominated asymptotics of solution to chemotaxis model , 2011 .

[7]  T. Suguro Well-posedness and unconditional uniqueness of mild solutions to the Keller–Segel system in uniformly local spaces , 2021, Journal of Evolution Equations.

[8]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[9]  Michael Hardy Combinatorics of Partial Derivatives , 2006, Electron. J. Comb..

[10]  P. Biler,et al.  Local criteria for blowup in two-dimensional chemotaxis models , 2014, 1410.7807.

[11]  Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system , 2008 .

[12]  H. Kozono,et al.  Existence and uniqueness theorem on weak solutions to the parabolic–elliptic Keller–Segel system , 2012 .

[13]  Nonlinear Instability for the Navier-Stokes Equations , 2005, math/0508173.

[14]  G. Karch,et al.  Blow-up versus global existence of solutions to aggregation equations , 2010, 1004.4021.

[15]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[16]  Benoît Perthame,et al.  Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions , 2004 .

[17]  Spectra of pseudo-differential operators on lp , 1979 .

[18]  Yan Guo,et al.  Pattern formation (I): The Keller–Segel model , 2005 .

[19]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[20]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[21]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[22]  Yasunori Maekawa,et al.  The Navier-Stokes equations with initial data in uniformly local $L^p$ spaces , 2006, Differential and Integral Equations.

[23]  L. Hedberg,et al.  Function Spaces and Potential Theory , 1995 .

[24]  Nicola Bellomo,et al.  Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues , 2015 .

[25]  Atsushi Yagi,et al.  Abstract Parabolic Evolution Equations and their Applications , 2009 .