High-Entropy Hydrides for Fast and Reversible Hydrogen Storage at Room Temperature: Binding-Energy Engineering via First-Principles Calculations and Experiments

[1]  V. V. Popov,et al.  Nanomaterials by severe plastic deformation: review of historical developments and recent advances , 2022, Materials Research Letters.

[2]  K. Edalati,et al.  High-entropy alloys as anode materials of nickel - metal hydride batteries , 2022, Scripta Materialia.

[3]  K. Edalati,et al.  High-entropy ceramics: Review of principles, production and applications , 2021, Materials Science and Engineering: R: Reports.

[4]  J. Huot,et al.  Microstructure and hydrogen storage properties of Ti–V–Cr based BCC-type high entropy alloys , 2021, International Journal of Hydrogen Energy.

[5]  W. Botta,et al.  An approach to design single BCC Mg-containing high entropy alloys for hydrogen storage applications , 2021, International Journal of Hydrogen Energy.

[6]  K. Edalati,et al.  Hydrogen storage properties of new A3B2-type TiZrNbCrFe high-entropy alloy , 2021 .

[7]  P. Vajeeston,et al.  Vibrational properties of High Entropy Alloy based metal hydrides probed by inelastic neutron scattering , 2021 .

[8]  V. Nassif,et al.  How 10 at% Al Addition in the Ti-V-Zr-Nb High-Entropy Alloy Changes Hydrogen Sorption Properties , 2021, Molecules.

[9]  C. Zlotea,et al.  Improving the hydrogen cycling properties by Mg addition in Ti-V-Zr-Nb refractory high entropy alloy , 2021 .

[10]  Hyung-ki Park,et al.  Study on hydrogen absorption and surface properties of TiZrVNbCr high entropy alloy , 2021 .

[11]  Y. Ikeda,et al.  Chemically induced local lattice distortions versus structural phase transformations in compositionally complex alloys , 2021, npj Computational Materials.

[12]  N. Berti,et al.  Substitutional effects in TiFe for hydrogen storage: a comprehensive review , 2021, Materials Advances.

[13]  Yuehua Wu,et al.  LaNi5.5 particles for reversible hydrogen storage in N-ethylcarbazole , 2021 .

[14]  F. Stein,et al.  Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties , 2020, Journal of Materials Science.

[15]  Y. Champion,et al.  Hydrogen storage in MgAlTiFeNi high entropy alloy , 2020 .

[16]  W. Botta,et al.  Synthesis and hydrogen storage behavior of Mg–V–Al–Cr–Ni high entropy alloys , 2020 .

[17]  X. Zu,et al.  Compositional dependence of hydrogenation performance of Ti-Zr-Hf-Mo-Nb high-entropy alloys for hydrogen/tritium storage , 2020 .

[18]  K. Edalati,et al.  Hydrogen storage in TiZrNbFeNi high entropy alloys, designed by thermodynamic calculations , 2020 .

[19]  Vinod Kumar,et al.  Synthesis and characterization of hydrogenated novel AlCrFeMnNiW high entropy alloy , 2020 .

[20]  L. Pessan,et al.  Polymer-based composite containing nanostructured LaNi5 for hydrogen storage: Improved air stability and processability , 2020 .

[21]  K. Edalati,et al.  Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi , 2020 .

[22]  K. Edalati,et al.  Mechanical Synthesis and Hydrogen Storage Characterization of MgVCr and MgVTiCrFe High‐Entropy Alloy , 2019, Advanced Engineering Materials.

[23]  K. Edalati,et al.  Mechanochemistry of Metal Hydrides: Recent Advances † , 2019, Materials.

[24]  J. Eckert,et al.  A manganese hydride molecular sieve for practical hydrogen storage under ambient conditions , 2019, Energy & Environmental Science.

[25]  X. Zu,et al.  A DFT Study of Hydrogen Storage in High-Entropy Alloy TiZrHfScMo , 2019, Nanomaterials.

[26]  Alastair D. Stuart,et al.  Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives , 2019, International Journal of Hydrogen Energy.

[27]  Erik Fransson,et al.  ICET – A Python Library for Constructing and Sampling Alloy Cluster Expansions , 2019, Advanced Theory and Simulations.

[28]  Y. Ikeda,et al.  Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys , 2019, Materials Characterization.

[29]  D. Ponge,et al.  Ultrastrong Medium‐Entropy Single‐Phase Alloys Designed via Severe Lattice Distortion , 2018, Advanced materials.

[30]  J. Perdew,et al.  Erratum: Accurate and simple analytic representation of the electron-gas correlation energy [Phys. Rev. B 45, 13244 (1992)] , 2018, Physical Review B.

[31]  M. E. Pronsato,et al.  Hydrogen storage in Zr0.9Ti0.1(Ni0.5Cr0.5-xVx)2 Laves phase, with x = 0, 0.125, 0.25, 0.375, 0.5. A theoretical approach , 2018, International Journal of Hydrogen Energy.

[32]  I. Tanaka,et al.  Design and synthesis of a magnesium alloy for room temperature hydrogen storage , 2018 .

[33]  W. Botta,et al.  Hydrogen-induced phase transition of MgZrTiFe0.5Co0.5Ni0.5 high entropy alloy , 2018 .

[34]  M. Polański,et al.  Microstructures and hydrogen storage properties of LaNiFeVMn alloys , 2017 .

[35]  D. Raabe,et al.  Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity , 2017 .

[36]  G. M. Stocks,et al.  Stacking fault energies of face-centered cubic concentrated solid solution alloys , 2017 .

[37]  E. George,et al.  Atomic displacement in the CrMnFeCoNi high-entropy alloy – A scaling factor to predict solid solution strengthening , 2016 .

[38]  U. Jansson,et al.  Superior hydrogen storage in high entropy alloys , 2016, Scientific Reports.

[39]  M. E. Pronsato,et al.  A DFT study of hydrogen storage in Zr(Cr0.5Ni0.5)2 Laves phase , 2016 .

[40]  K. Edalati,et al.  Solid-state reactions and hydrogen storage in magnesium mixed with various elements by high-pressure torsion: experiments and first-principles calculations , 2016 .

[41]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[42]  A. Otero-de-la-Roza,et al.  Gibbs2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data , 2011, Comput. Phys. Commun..

[43]  A. Visintín,et al.  Hydrogen Storage in AB2 Laves Phase (A = Zr, Ti; B = Ni, Mn, Cr, V): Binding Energy and Electronic Structure , 2010 .

[44]  R. Žitko,et al.  Structural and Electronic Properties of the Hydrogenated ZrCr2 Laves Phases , 2010 .

[45]  M. Platt,et al.  Atoms , 2009, Archives of Disease in Childhood.

[46]  Jijun Zhao,et al.  Hydrogen storage behavior in C15 Laves phase compound TiCr2 by first principles , 2009 .

[47]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[48]  Y. Fukai The Metal-Hydrogen System , 2005 .

[49]  V. Verbetsky,et al.  Structure of (Ti,Zr)–Mn–V nonstoichiometric Laves phases and (Ti0.9Zr0.1)(Mn0.75V0.15Ti0.1)2D2.8 deuteride , 2003 .

[50]  E. Carter,et al.  Carbon dissolution and diffusion in ferrite and austenite from first principles , 2003 .

[51]  Suklyun Hong,et al.  Hydrogen in Laves phase Zr X 2 ( X = V , Cr, Mn, Fe, Co, Ni) compounds: Binding energies and electronic and magnetic structure , 2002 .

[52]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[53]  J. Soubeyroux,et al.  Structural studies of Laves phases ZrCo(V1−xCrx) with 0⩽x≤1 and their hydrides , 1999 .

[54]  M. Tsukahara,et al.  Neutron diffraction study of the new hexagonal Laves phase (Hf,Ti)(Ni,V)2 and its deuteride , 1999 .

[55]  P. Entel,et al.  AB INITIO FULL-POTENTIAL STUDY OF THE STRUCTURAL AND MAGNETIC PHASE STABILITY OF IRON , 1999 .

[56]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[57]  P. Entel,et al.  Ab Initio Investigations of Iron-Based Martensitic Systems , 1997 .

[58]  J. Soubeyroux,et al.  Structural studies of Laves phases Zr(Cr1−xNix)2 with 0≤x≤0.4 and their hydrides , 1997 .

[59]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[60]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[61]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[62]  Dan Thoma,et al.  A geometric analysis of solubility ranges in Laves phases , 1995 .

[63]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[64]  J. Soubeyroux,et al.  Structural study of hyperstoichiometric alloys ZrMn2+x and their hydrides , 1992 .

[65]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[66]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[67]  Joshua R. Smith,et al.  Temperature effects on the universal equation of state of solids. , 1987, Physical review. B, Condensed matter.

[68]  J. Soubeyroux,et al.  Neutron diffraction in Ti1.2Mn1.8 deuteride: Structural and magnetic aspects , 1984 .

[69]  L. Schlapbach,et al.  The activation of FeTi for hydrogen absorption , 1983 .

[70]  R. L. Cohen,et al.  Degradation of LaNi5 by temperature-induced cycling , 1980 .

[71]  D. Shoemaker,et al.  Concerning atomic sites and capacities for hydrogen absorption in the AB2 Friauf-Laves phases , 1979 .

[72]  P. Fischer,et al.  The distribution of the deuterium atoms in the deuterated hexagonal laves-phase ZrMn2D3 , 1979 .

[73]  A. Switendick Theoretical studies of hydrogen in metals: current status and further prospects , 1978 .

[74]  John C. Slater,et al.  Atomic Radii in Crystals , 1964 .