On the Hausdorff measure of sets of non-Lyapunov behaviour, and a Jarnik-type theorem for random Schroedinger operators
暂无分享,去创建一个
[1] H. Furstenberg. Noncommuting random products , 1963 .
[2] Barry Simon,et al. Subharmonicity of the Lyaponov index , 1983 .
[3] Michael Aizenman,et al. Random Operators: Disorder Effects on Quantum Spectra and Dynamics , 2015 .
[4] S. Jitomirskaya,et al. Large Deviations of the Lyapunov Exponent and Localization for the 1D Anderson Model , 2018, Communications in Mathematical Physics.
[5] F. Wegner. Bounds on the density of states in disordered systems , 1981 .
[6] P. Hislop,et al. A lower bound for the density of states of the lattice Anderson model , 2007, 0705.1707.
[7] Victor Beresnevich,et al. A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures , 2004 .
[8] J. Combes,et al. Generalized Eigenvalue-Counting Estimates for the Anderson Model , 2008, 0804.3202.
[9] Nariyuki Minami,et al. Local fluctuation of the spectrum of a multidimensional Anderson tight binding model , 1996 .
[10] Victor Beresnevich,et al. Measure Theoretic Laws for Lim Sup Sets , 2004 .
[11] B. Simon. EQUILIBRIUM MEASURES AND CAPACITIES IN SPECTRAL THEORY , 2007, 0711.2700.
[12] B. Lautrup,et al. Products of random matrices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] On Eigenvalue spacings for the 1-D Anderson model with singular site distribution , 2013, 1308.4905.
[14] Anton Gorodetski,et al. Parametric Furstenberg Theorem on random products of SL(2,R) matrices , 2021, Advances in Mathematics.
[15] René Carmona,et al. Anderson localization for Bernoulli and other singular potentials , 1987 .
[16] B. Simon,et al. Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization , 1996 .
[17] Otto Frostman. Potentiel d'équilibre et capacité des ensembles : Avec quelques applications a la théorie des fonctions , 1935 .