Excitable optical waves in semiconductor microcavities.

We demonstrate experimentally and theoretically the existence of excitable optical waves in semiconductor microcavities. Although similar to those observed in biological and chemical systems, these excitable optical waves are self-confined. This is due to a new dynamical scenario, where a stationary Turning pattern controls the propagation of waves in an excitable medium, thus bringing together the two paradigms of dynamical behavior (waves and patterns) in active media.

[1]  James P. Keener,et al.  Mathematical physiology , 1998 .

[2]  D. Clapham,et al.  Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. , 1991, Science.

[3]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[4]  Salvador Balle,et al.  Experimental study of a broad area vertical-cavity semiconductor optical amplifier , 2004 .

[5]  A. Zhabotinsky,et al.  Concentration Wave Propagation in Two-dimensional Liquid-phase Self-oscillating System , 1970, Nature.

[6]  Dulos,et al.  Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. , 1990, Physical review letters.

[7]  Salvador Balle,et al.  Experimental evidence of van der Pol-Fitzhugh-Nagumo dynamics in semiconductor optical amplifiers. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Excitable wave patterns in a spatially extended nonlinear optical cavity. , 1999, Optics letters.

[9]  L. Lugiato,et al.  Cavity solitons as pixels in semiconductor microcavities , 2002, Nature.

[10]  Lorenzo Spinelli,et al.  Spatial Soliton Pixels in Semiconductor Devices , 1997 .

[11]  Giovanni Giacomelli,et al.  Andronov bifurcation and excitability in semiconductor lasers with optical feedback , 1997 .

[12]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[13]  Salvador Balle,et al.  Thermo-optical "canard orbits" and excitable limit cycles. , 2004, Physical review letters.

[14]  Richardson,et al.  Spatiotemporal oscillations in a semiconductor étalon. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[15]  Jorge R. Tredicce,et al.  Optical excitable waves , 1998 .

[16]  M. C. Woods,et al.  Spatiotemporal dynamics of damped propagation in excitable cardiac tissue. , 2003, Physical review letters.

[17]  K. Ebeling,et al.  Spatial structure of broad-area vertical-cavity regenerative amplifiers. , 2000 .

[18]  Irving R Epstein,et al.  Oscillatory Turing patterns in reaction-diffusion systems with two coupled layers. , 2003, Physical review letters.

[19]  Lorenzo Spinelli,et al.  Thermal effects and transverse structures in semiconductor microcavities with population inversion , 2002 .

[20]  W. Baxter,et al.  Stationary and drifting spiral waves of excitation in isolated cardiac muscle , 1992, Nature.

[21]  S. Kondo,et al.  A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus , 1995, Nature.

[22]  Frisch,et al.  Spiral waves in liquid crystal. , 1994, Physical review letters.

[23]  Lorenzo Spinelli,et al.  SPATIAL SOLITONS IN SEMICONDUCTOR MICROCAVITIES , 1998 .

[24]  A. Winfree Spiral Waves of Chemical Activity , 1972, Science.

[25]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.