Analysis of a bistable climate toy model with physics-based machine learning methods

[1]  D. Wischik,et al.  Using probabilistic machine learning to better model temporal patterns in parameterizations: a case study with the Lorenz 96 model , 2022, Geoscientific Model Development.

[2]  J. Kurths,et al.  Neural partial differential equations for chaotic systems , 2021, New Journal of Physics.

[3]  A. Laio,et al.  Dynamical Landscape and Multistability of the Earth's Climate , 2020 .

[4]  Valerio Lucarini,et al.  Mechanics and thermodynamics of a new minimal model of the atmosphere , 2020, The European Physical Journal Plus.

[5]  Devika Subramanian,et al.  Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural network, and long short-term memory network , 2020, Nonlinear Processes in Geophysics.

[6]  P. L. Green,et al.  A possibilistic interpretation of ensemble forecasts: experiments on the imperfect Lorenz 96 system , 2020, Advances in Science and Research.

[7]  H. Engler,et al.  On the Lorenz '96 model and some generalizations , 2020, Discrete & Continuous Dynamical Systems - B.

[8]  V. Lucarini,et al.  Rough basin boundaries in high dimension: Can we classify them experimentally? , 2020, Chaos.

[9]  Ali Ramadhan,et al.  Universal Differential Equations for Scientific Machine Learning , 2020, ArXiv.

[10]  T. Lenton,et al.  Climate tipping points — too risky to bet against , 2019, Nature.

[11]  Maximilian Gelbrecht,et al.  Monte Carlo basin bifurcation analysis , 2019, New Journal of Physics.

[12]  M. Ghil,et al.  The physics of climate variability and climate change , 2019, 1910.00583.

[13]  M. Brunetti,et al.  Co-existing climate attractors in a coupled aquaplanet , 2019, Climate Dynamics.

[14]  Marc Bocquet,et al.  Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model , 2019, J. Comput. Sci..

[15]  V. Lucarini,et al.  Global stability properties of the climate: Melancholia states, invariant measures, and phase transitions , 2019, Nonlinearity.

[16]  Valerio Lucarini,et al.  Effects of stochastic parametrization on extreme value statistics. , 2019, Chaos.

[17]  J. Kurths,et al.  Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall , 2019, Nature Geoscience.

[18]  Gabriele Vissio,et al.  Statistical mechanical methods for parametrization in geophysical fluid dynamics , 2018 .

[19]  Michael Innes,et al.  Fashionable Modelling with Flux , 2018, ArXiv.

[20]  Antonio Politi,et al.  Lyapunov analysis of multiscale dynamics: the slow bundle of the two-scale Lorenz 96 model , 2018, Nonlinear Processes in Geophysics.

[21]  Valerio Lucarini,et al.  Transitions across Melancholia States in a Climate Model: Reconciling the Deterministic and Stochastic Points of View. , 2018, Physical review letters.

[22]  George Datseris,et al.  DynamicalSystems.jl: A Julia software library for chaos and nonlinear dynamics , 2018, J. Open Source Softw..

[23]  Michelle Girvan,et al.  Hybrid Forecasting of Chaotic Processes: Using Machine Learning in Conjunction with a Knowledge-Based Model , 2018, Chaos.

[24]  Guannan Hu,et al.  Data Assimilation in a Multi-Scale Model , 2017 .

[25]  Alef E. Sterk,et al.  Symmetries in the Lorenz-96 Model , 2017, Int. J. Bifurc. Chaos.

[26]  Frank Hutter,et al.  Decoupled Weight Decay Regularization , 2017, ICLR.

[27]  Alef Sterk,et al.  Wave propagation in the Lorenz-96 model , 2017 .

[28]  Alef E. Sterk,et al.  Predictability of Extreme Waves in the Lorenz-96 Model Near Intermittency and Quasi-Periodicity , 2017, Complex..

[29]  Qing Nie,et al.  DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia , 2017, Journal of Open Research Software.

[30]  Alef E. Sterk,et al.  Travelling waves and their bifurcations in the Lorenz-96 model , 2017, 1704.05442.

[31]  Valerio Lucarini,et al.  Response formulae for n-point correlations in statistical mechanical systems and application to a problem of coarse graining , 2017, 1702.02666.

[32]  Valerio Lucarini,et al.  A proof of concept for scale‐adaptive parametrizations: the case of the Lorenz '96 model , 2016, 1612.07223.

[33]  V. Lucarini,et al.  Edge states in the climate system: exploring global instabilities and critical transitions , 2016, 1605.03855.

[34]  Rafail V. Abramov,et al.  Leading Order Response of Statistical Averages of a Dynamical System to Small Stochastic Perturbations , 2016, 1604.00931.

[35]  Wansuo Duan,et al.  An Approach to Generating Mutually Independent Initial Perturbations for Ensemble Forecasts: Orthogonal Conditional Nonlinear Optimal Perturbations , 2016 .

[36]  Paul D. Williams,et al.  Stochastic Parameterization: Towards a new view of Weather and Climate Models , 2015, 1510.08682.

[37]  Valerio Lucarini,et al.  Equivalence of Non-equilibrium Ensembles and Representation of Friction in Turbulent Flows: The Lorenz 96 Model , 2014, Journal of Statistical Physics.

[38]  Thai Son Doan,et al.  The dichotomy spectrum for random dynamical systems and pitchfork bifurcations with additive noise , 2013, 1310.6166.

[39]  I. Moroz,et al.  Stochastic parametrizations and model uncertainty in the Lorenz ’96 system , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  Rafail V. Abramov,et al.  A Simple Stochastic Parameterization for Reduced Models of Multiscale Dynamics , 2013, 1302.4132.

[41]  Peter J. Menck,et al.  How basin stability complements the linear-stability paradigm , 2013, Nature Physics.

[42]  Brian C J Moore,et al.  Multistability in perception: binding sensory modalities, an overview , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[43]  Valerio Lucarini,et al.  Nambu representation of an extended Lorenz model with viscous heating , 2012, 1202.2210.

[44]  M. Scheffer,et al.  Global Resilience of Tropical Forest and Savanna to Critical Transitions , 2011, Science.

[45]  D. Abbot,et al.  The Jormungand global climate state and implications for Neoproterozoic glaciations , 2011 .

[46]  Raymond T. Pierrehumbert,et al.  Climate of the Neoproterozoic , 2011 .

[47]  Peter Cox,et al.  Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  V. Lucarini Stochastic Perturbations to Dynamical Systems: A Response Theory Approach , 2011, Journal of Statistical Physics.

[49]  Valerio Lucarini,et al.  A statistical mechanical approach for the computation of the climatic response to general forcings , 2010, 1008.0340.

[50]  Juan M López,et al.  Logarithmic bred vectors in spatiotemporal chaos: structure and growth. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  K. Fraedrich,et al.  Thermodynamic Analysis of Snowball Earth Hysteresis Experiment: Efficiency, Entropy Production, and Irreversibility , 2010 .

[52]  A. Karimi,et al.  Extensive chaos in the Lorenz-96 model. , 2009, Chaos.

[53]  D. Ruelle A review of linear response theory for general differentiable dynamical systems , 2009, 0901.0484.

[54]  Janusz Bialek,et al.  Power System Dynamics: Stability and Control , 2008 .

[55]  Y. Payan,et al.  Modelling the human pharyngeal airway: validation of numerical simulations using in vitro experiments , 2008, Medical & Biological Engineering & Computing.

[56]  B. Eckhardt,et al.  Basin boundary, edge of chaos and edge state in a two-dimensional model , 2008, 0808.2636.

[57]  W. Lytton Computer modelling of epilepsy , 2008, Nature Reviews Neuroscience.

[58]  Juan M López,et al.  Structure of characteristic Lyapunov vectors in spatiotemporal chaos. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Andrew J. Majda,et al.  New Approximations and Tests of Linear Fluctuation-Response for Chaotic Nonlinear Forced-Dissipative Dynamical Systems , 2008, J. Nonlinear Sci..

[60]  Wolfgang Lucht,et al.  Tipping elements in the Earth's climate system , 2008, Proceedings of the National Academy of Sciences.

[61]  A. Weaver,et al.  Snowball versus slushball Earth: Dynamic versus nondynamic sea ice? , 2007 .

[62]  Daniel S. Wilks,et al.  Comparison of ensemble‐MOS methods in the Lorenz '96 setting , 2006 .

[63]  J. Yorke,et al.  Edge of chaos in a parallel shear flow. , 2006, Physical review letters.

[64]  Edward N. Lorenz,et al.  Designing Chaotic Models , 2005 .

[65]  Ethem Alpaydin,et al.  Introduction to Machine Learning (Adaptive Computation and Machine Learning) , 2004 .

[66]  Leonard A. Smith,et al.  Visualizing bifurcations in High Dimensional Systems: the Spectral bifurcation Diagram , 2003, Int. J. Bifurc. Chaos.

[67]  D. Orrell,et al.  Model Error and Predictability over Different Timescales in the Lorenz '96 Systems , 2003 .

[68]  Carles Simó,et al.  Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing , 2002 .

[69]  D. A. Baxter,et al.  Mathematical Modeling of Gene Networks , 2000, Neuron.

[70]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[71]  Graham,et al.  Nonequilibrium potentials for dynamical systems with fractal attractors or repellers. , 1991, Physical review letters.

[72]  A. Babloyantz,et al.  Low-dimensional chaos in an instance of epilepsy. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[73]  J. Yorke,et al.  Fractal Basin Boundaries, Long-Lived Chaotic Transients, And Unstable-Unstable Pair Bifurcation , 1983 .

[74]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[75]  R. May Thresholds and breakpoints in ecosystems with a multiplicity of stable states , 1977, Nature.

[76]  M. Budyko The effect of solar radiation variations on the climate of the Earth , 1969 .

[77]  William D. Sellers,et al.  A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System. , 1969 .

[78]  Peter Secretan Learning , 1965, Mental Health.

[79]  Janusz Bialek,et al.  Power System Dynamics. Stability and Control. 3rd edition , 2020 .

[80]  Quoc V. Le,et al.  Searching for Activation Functions , 2018, arXiv.

[81]  Tamás Bódai,et al.  Extreme Value Analysis in dynamical systems: two case studies , 2017 .

[82]  Coleman,et al.  Toward a New View of Weather and Climate Models , 2017 .

[83]  Hannah,et al.  STOCHASTIC PARAMETERIZATION Toward a New View of Weather and Climate Models , 2017 .

[84]  M. Kubát An Introduction to Machine Learning , 2017, Springer International Publishing.

[85]  Dai Edge states in the climate system : exploring global instabilities and critical transitions , 2017 .

[86]  Judith Berner,et al.  Stochastic climate theory and modeling , 2015 .

[87]  Olivier Talagrand,et al.  Four‐dimensional variational assimilation in the unstable subspace and the optimal subspace dimension , 2010 .

[88]  M. Budyko The Effects of Changing the Solar Constant on the Climate of a General Circulation Model , 2008 .

[89]  E. Lorenz Predictability of Weather and Climate: Predictability – a problem partly solved , 2006 .

[90]  D. Wilks Effects of stochastic parametrizations in the Lorenz '96 system , 2005 .

[91]  Anna Trevisan,et al.  Assimilation of Standard and Targeted Observations within the Unstable Subspace of the Observation–Analysis–Forecast Cycle System , 2004 .

[92]  J. Halevi,et al.  Structure and Growth , 1994, Économie appliquée.

[93]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[94]  Michael Ghil,et al.  Climate stability for a Sellers-type model , 1976 .