H 2-matrix arithmetics in linear complexity
暂无分享,去创建一个
[1] S. Börm. ℋ2-matrices – Multilevel methods for the approximation of integral operators , 2004 .
[2] Lars Grasedyck,et al. Theorie und Anwendungen Hierarchischer Matrizen , 2006 .
[3] Steffen Börm,et al. Hybrid cross approximation of integral operators , 2005, Numerische Mathematik.
[4] Mario Bebendorf,et al. Mathematik in den Naturwissenschaften Leipzig Existence of H-Matrix Approximants to the Inverse FE-Matrix of Elliptic Operators with L ∞-Coefficients , 2003 .
[5] 正人 木村. Max-Planck-Institute for Mathematics in the Sciences(海外,ラボラトリーズ) , 2001 .
[6] W. Hackbusch,et al. On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .
[7] Jens Markus Melenk,et al. Approximation of Integral Operators by Variable-Order Interpolation , 2005, Numerische Mathematik.
[8] Stefan A. Sauter. Variable order panel clustering (extended version) , 1999 .
[9] V. Rokhlin. Rapid solution of integral equations of classical potential theory , 1985 .
[10] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[11] W. Hackbusch,et al. H 2 -matrix approximation of integral operators by interpolation , 2002 .
[12] Wolfgang Hackbusch,et al. Construction and Arithmetics of H-Matrices , 2003, Computing.
[13] Wolfgang Dahmen,et al. Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..
[14] Jacob K. White,et al. Multiscale Bases for the Sparse Representation of Boundary Integral Operators on Complex Geometry , 2002, SIAM J. Sci. Comput..
[15] HackbuschW.. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .
[16] Wolfgang Hackbusch,et al. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.
[17] Steffen Börm,et al. BEM with linear complexity for the classical boundary integral operators , 2004, Math. Comput..