A self-adaptive differential evolution algorithm based on ant system with application to estimate kinetic parameters

A self-adaptive differential evolution (DE) algorithm, in which an ant system is used to implement the self-adaptation of mutation and crossover control parameters, called ant system self-adaptive differential evolution (ASSDE), is proposed. First, the spaces of the mutation and crossover control parameters are divided into several regions and all regions are given the same initial intensity of pheromone trails. The probability of selecting parameter regions for each individual is influenced by the intensity of the region pheromone trails and its visibility. An individual will reinforce the trail of the selected regions with its own pheromone, when the offspring is better than its parent. The experiment results show that the ASSDE clearly outperforms the original DE algorithm and other existing self-adaptive DE algorithms for 16 benchmark functions. Furthermore, ASSDE is applied to develop the global kinetic model for hydropurification of terephthalic acid (HPTA), and satisfactory results are obtained.

[1]  Ali Kaveh,et al.  A hybrid ant strategy and genetic algorithm to tune the population size for efficient structural optimization , 2007 .

[2]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[3]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[4]  A. Ahuja,et al.  An AIS-ACO Hybrid Approach for Multi-Objective Distribution System Reconfiguration , 2007, IEEE Transactions on Power Systems.

[5]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[6]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[7]  Gatze Lettinga,et al.  Anaerobic pre-treatment of petrochemical effluents: terephthalic acid wastewater. , 1997 .

[8]  M. Bialko,et al.  Training of artificial neural networks using differential evolution algorithm , 2008, 2008 Conference on Human System Interactions.

[9]  Yong Gu,et al.  Scalable multi-objective optimization of industrial purified terephthalic acid (PTA) oxidation process , 2004, Comput. Chem. Eng..

[10]  Yanbin Yuan,et al.  An enhanced differential evolution algorithm for daily optimal hydro generation scheduling , 2008, Comput. Math. Appl..

[11]  R. J. Sheehan,et al.  Phthalic Acids and Other Benzenepolycarboxylic Acids , 2000 .

[12]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[13]  Chinyao Low,et al.  An ant direction hybrid differential evolution heuristic for the large-scale passive harmonic filters planning problem , 2008, Expert Syst. Appl..

[14]  Amin Nobakhti,et al.  A simple self-adaptive Differential Evolution algorithm with application on the ALSTOM gasifier , 2008, Appl. Soft Comput..

[15]  B. Babu,et al.  Differential evolution for multi-objective optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[16]  S. Sakaguchi,et al.  A New Strategy for the Preparation of Terephthalic Acid by the Aerobic Oxidation of p-Xylene using N-Hydroxyphthalimide as a Catalyst , 2001 .

[17]  V. K. Jayaraman,et al.  Ant Colony Approach to Continuous Function Optimization , 2000 .

[18]  Adam S lowik Adaptive Selection of Control Parameters in Differential Evolution Algorithms , 2007 .

[19]  Hans-Michael Voigt,et al.  Soft Genetic Operators in Evolutionary Algorithms , 1995, Evolution and Biocomputation.

[20]  Janez Brest,et al.  Performance comparison of self-adaptive and adaptive differential evolution algorithms , 2007, Soft Comput..

[21]  Marco Dorigo,et al.  Ant colony optimization for continuous domains , 2008, Eur. J. Oper. Res..

[22]  William H. Press,et al.  Numerical recipes in C , 2002 .

[23]  L. Darrell Whitley,et al.  Quad Search and Hybrid Genetic Algorithms , 2003, GECCO.

[24]  F. Aluffi-Pentini,et al.  Global optimization and stochastic differential equations , 1985 .

[25]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[26]  H. Abbass The self-adaptive Pareto differential evolution algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[27]  Andries Petrus Engelbrecht,et al.  Empirical analysis of self-adaptive differential evolution , 2007, Eur. J. Oper. Res..

[28]  Johann Dréo,et al.  An ant colony algorithm aimed at dynamic continuous optimization , 2006, Appl. Math. Comput..

[29]  Gian Luca Foresti,et al.  A distributed probabilistic system for adaptive regulation of image processing parameters , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[30]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[31]  Adam Slowik,et al.  Design and Optimization of IIR Digital Filters with Non-standard Characteristics Using Continuous Ant Colony Optimization Algorithm , 2008, SETN.

[32]  F. Eeckman,et al.  Evolution and Biocomputation: Computational Models of Evolution , 1995 .

[33]  Zahra Naji Azimi,et al.  Hybrid heuristics for Examination Timetabling problem , 2005, Appl. Math. Comput..

[34]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[35]  Rakesh Angira,et al.  A Comparative Study of Differential Evolution Algorithms for Estimation of Kinetic Parameters , 2012 .

[36]  Sandra Paterlini,et al.  Using differential evolution to improve the accuracy of bank rating systems , 2007, Comput. Stat. Data Anal..

[37]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[38]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[39]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[40]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[41]  Xue-feng Yan,et al.  Novel Macrokinetic Model for Industrial Hydrogenation Purifying of Terephthalic Acid , 2008 .