On finding approximate supernodes for an efficient block-ILU(k

Among existing preconditioners, the level-of-fill ILU has been quite popular as a general-purpose technique. Experimental observations have shown that, when coupled with block techniques, these methods can be quite effective in solving realistic problems arising from various applications. In this work, we consider an extension of this kind of method which is suitable for parallel environments. Our method is developed from the framework of high performance sparse direct solvers. The main idea we propose is to define an adaptive blockwise incomplete factorization that is much more accurate (and numerically more robust) than the scalar incomplete factorizations commonly used to precondition iterative solvers. These requirements lead to a robust class of parallel preconditioners based on generalized versions of block ILU techniques.

[1]  V. Kumar,et al.  Parallel Threshold-based ILU Factorization , 1997, ACM/IEEE SC 1997 Conference (SC'97).

[2]  Alex Pothen,et al.  Level-based Incomplete LU Factorization: Graph Model and Algorithms , 2002 .

[3]  D. Rose,et al.  Generalized nested dissection , 1977 .

[4]  D. Rose,et al.  Algorithmic aspects of vertex elimination on directed graphs. , 1975 .

[5]  Henk A. van der Vorst,et al.  A generalized domain decomposition paradigm for parallel incomplete LU factorization preconditionings , 2001, Future Gener. Comput. Syst..

[6]  Padma Raghavan,et al.  A latency tolerant hybrid sparse solver using incomplete Cholesky factorization , 2003, Numer. Linear Algebra Appl..

[7]  T. Chan,et al.  A framework for block ILU factorizations using block-size reduction , 1995 .

[8]  Alan George,et al.  Computer Solution of Large Sparse Positive Definite , 1981 .

[9]  W. James,et al.  A Conjugate Gradient-Truncated Direct Method for the Iterative Solution of the Reservoir Simulation Pressure Equation , 1981 .

[10]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[11]  Joseph W. H. Liu,et al.  On Finding Supernodes for Sparse Matrix Computations , 1993, SIAM J. Matrix Anal. Appl..

[12]  P. Charrier,et al.  Algorithmique et calculs de complexité pour un solveur de type dissections emboîtées , 1989 .

[13]  Christof Vömel,et al.  Adapting a parallel sparse direct solver to architectures with clusters of SMPs , 2003, Parallel Comput..

[14]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[15]  Yousef Saad,et al.  High-order ILU preconditioners for CFD problems , 2000 .

[16]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[17]  Y. Saad,et al.  Deflated and Augmented Krylov Subspace Techniques , 1997 .

[18]  Pascal Hénon,et al.  PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems , 2002, Parallel Comput..

[19]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[20]  Edmond Chow,et al.  An object-oriented framework for block preconditioning , 1998, TOMS.

[21]  James Demmel,et al.  A Scalable Sparse Direct Solver Using Static Pivoting , 1999, PPSC.

[22]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[23]  Alex Pothen,et al.  A Scalable Parallel Algorithm for Incomplete Factor Preconditioning , 2000, SIAM J. Sci. Comput..

[24]  Pascal Hénon,et al.  Efficient algorithms for direct resolution of large sparse system on clusters of SMP nodes , 2003 .

[25]  Joseph W. H. Liu The role of elimination trees in sparse factorization , 1990 .

[26]  Patrick R. Amestoy,et al.  Hybridizing nested dissection and halo approximate minimum degree for efficient sparse matrix ordering , 2000 .

[27]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[28]  Bruce Hendrickson,et al.  An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations , 1995, SIAM J. Sci. Comput..

[29]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[30]  Anshul Gupta,et al.  Recent Progress in General Sparse Direct Solvers , 2001, International Conference on Computational Science.