Fabrication of an electrochemical sensor based on the electrodeposition of Pt nanoparticles on multiwalled carbon nanotubes film for voltammetric determination of ceftriaxone in the presence of lidocaine, assisted by factorial-based response-surface methodology

A glassy carbon electrode (GCE) is modified with platinum nanoparticle (PtNPs) decorated multiwalled carbon nanotube (MWCNT). The modified electrode is applied for the determination of ceftriaxone (CFX) in the presence of lidocaine. Different methods were used to characterize the surface morphology of the modified electrode. The electrochemical behavior of CFX was investigated at GCE, MWCNT/GCE and PtNPs/MWCNT/GCE. A factorial-based response-surface methodology was used to find out the optimum conditions with minimum number of experiments. Under the optimized conditions, oxidation peak currents increased linearly with CFX concentration in the range of 0.01–10.00 μM with a detection limit of 9.01 nM. The results prove that the modified electrode is also suitable for the determination of CFX in pharmaceutical and clinical preparations.

[1]  G. R. Edwards,et al.  Chemometrics: Experimental design , 1996 .

[2]  C. Banks,et al.  Chemically Modified Carbon Nanotubes for Use in Electroanalysis , 2006 .

[3]  Zhaolin Liu,et al.  Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell , 2004 .

[4]  Hui Chen,et al.  Determination of Ceftriaxone Sodium in Pharmaceutical Formulations by Flow Injection Analysis with Acid Potassium Permanganate Chemiluminescence Detection , 2006, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[5]  M. Saito,et al.  Structural assembly effects of Pt nanoparticle–carbon nanotube–polyaniline nanocomposites on the enhancement of biohydrogen fuel cell performance , 2011 .

[6]  Y. Tsai,et al.  Electrochemical deposition of platinum nanoparticles in multiwalled carbon nanotube–Nafion composite for methanol electrooxidation , 2008 .

[7]  M. Endo,et al.  Ni-deposited multi-walled carbon nanotubes by electrodeposition , 2004 .

[8]  Jue Lu,et al.  Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. , 2008, ACS nano.

[9]  S. A. Ghani,et al.  MWCNT-ruthenium oxide composite paste electrode as non-enzymatic glucose sensor , 2012 .

[10]  P. Yang,et al.  Crystal Growth , 2004 .

[11]  M. Pileni,et al.  Collections of copper nanocrystals characterized by different sizes and shapes: Optical response of these nanoobjects , 2004 .

[12]  Zhaolin Liu,et al.  Preparation of Pt and PtRu nanoparticles supported on carbon nanotubes by microwave-assisted heating polyol process , 2004 .

[13]  Huamin Zhang,et al.  High active PtAu/C catalyst with core–shell structure for oxygen reduction reaction , 2010 .

[14]  P. He,et al.  Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes , 2005 .

[15]  S. Ozkan,et al.  Anodic voltammetric behavior and determination of cefixime in pharmaceutical dosage forms and biological fluids. , 2005, Talanta.

[16]  Y. Yue,et al.  Electrochemical behavior of propranolol hydrochloride in neutral solution on platinum nanoparticles doped multi-walled carbon nanotubes modified glassy carbon electrode , 2012 .

[17]  A. Prasad,et al.  Polarographic determination of certain cephalosporins in pharmaceutical preparations , 2010 .

[18]  J. Raoof,et al.  A novel sensor for cephalosporins based on electrocatalytic oxidation by poly(o-anisidine)/SDS/Ni modified carbon paste electrode. , 2010, Talanta.

[19]  E. Bishop,et al.  Electroanalytical studies of antibacterial and diuretic drugs at rotating disc electrodes of gold and platinum , 1984 .

[20]  N. el-Maali,et al.  Electrochemical reduction and oxidation of two cephalosporin antibiotics: Ceftriaxone (rocephin) and cefoperazone (cefobid) , 1993 .

[21]  H. Çiftçi,et al.  Electrochemical polymerization of 2-aminothiazole , 2011 .

[22]  D. Agbaba,et al.  HPTLC determination of ceftriaxone, cefixime and cefotaxime in dosage forms. , 1998, Journal of pharmaceutical and biomedical analysis.

[23]  H. Yadegari,et al.  Electrochemical oxidation and determination of ceftriaxone on a glassy carbon and carbon-nanotube-modified glassy carbon electrodes , 2009 .

[24]  T. M. Day,et al.  Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks. , 2005, Journal of the American Chemical Society.

[25]  C. J. Gilmore,et al.  Chemometrics: Experimental design : E. Morgan, Wiley, Chichester, 1991. Pages xviii + 275. £25.00. , 1991 .

[26]  Hu-lin Li,et al.  Ultrasonic assisted polyol synthesis of highly dispersed Pt/MWCNT electrocatalyst for methanol oxidation , 2009 .

[27]  Younan Xia,et al.  Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm. , 2003, The Analyst.

[28]  L. Dick,et al.  Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss , 2002 .

[29]  Liangti Qu,et al.  Shape/size-controlled syntheses of metal nanoparticles for site-selective modification of carbon nanotubes. , 2006, Journal of the American Chemical Society.

[30]  Cees Dekker,et al.  Electrodeposition of noble metal nanoparticles on carbon nanotubes. , 2005, Journal of the American Chemical Society.

[31]  R. Goyal,et al.  Electrochemical oxidation of 2-aminobenzothiazole , 1986 .

[32]  Hadi Parastar,et al.  Characterization of volatile components of Iranian saffron using factorial-based response surface modeling of ultrasonic extraction combined with gas chromatography-mass spectrometry analysis. , 2009, Journal of chromatography. A.

[33]  R. Seaton,et al.  Outpatient parenteral antimicrobial therapy with ceftriaxone, a review , 2012, International Journal of Clinical Pharmacy.

[34]  S. Altınöz,et al.  Determination of ceftriaxone in aqueous humor and serum samples of differential-pulse adsorptive stripping voltammetry. , 1994, The Analyst.

[35]  Liangti Qu,et al.  Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes. , 2005, Journal of the American Chemical Society.

[36]  Jung-Min You,et al.  Non-enzymatic superoxide anion radical sensor based on Pt nanoparticles covalently bonded to thiolated MWCNTs , 2012 .

[37]  M. Akl,et al.  Validation of an HPLC-UV method for the determination of ceftriaxone sodium residues on stainless steel surface of pharmaceutical manufacturing equipments. , 2011, Journal of pharmaceutical and biomedical analysis.

[38]  Xingyi Wang,et al.  Phosphoric acid modified SBA-15 as a highly efficient heterogeneous catalyst for the synthesis of 4,4′-diamino-3,3′-dibutyl-diphenyl methane , 2010 .

[39]  Liwei Chen,et al.  Templated synthesis of single-walled carbon nanotube and metal nanoparticle assemblies in solution. , 2006, Journal of the American Chemical Society.

[40]  K. Patel,et al.  Development and Validation of Spectrophotometric Method for Determination of Ceftriaxone Sodium in Pharmaceutical Dosage Forms , 2010 .

[41]  Latha A. Gearheart,et al.  Anisotropic Chemical Reactivity of Gold Spheroids and Nanorods , 2002 .

[42]  Balaprasad Ankamwar,et al.  Biological synthesis of triangular gold nanoprisms , 2004, Nature materials.

[43]  K. Asadpour‐Zeynali,et al.  Electrocatalytic oxidation and determination of antibiotic in pharmaceutical samples on a nanostructure. , 2011, Analytical methods : advancing methods and applications.

[44]  Sarunya Bangsaruntip,et al.  Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. , 2002, Journal of the American Chemical Society.

[45]  Nishant A. Dafale,et al.  Quantification of ceftriaxone sodium in pharmaceutical preparations by a new validated microbiological bioassay , 2012 .