Improving scale invariant feature transform-based descriptors with shape–color alliance robust feature

Abstract. Constructing appropriate descriptors for interest points in image matching is a critical aspect task in computer vision and pattern recognition. A method as an extension of the scale invariant feature transform (SIFT) descriptor called shape–color alliance robust feature (SCARF) descriptor is presented. To address the problem that SIFT is designed mainly for gray images and lack of global information for feature points, the proposed approach improves the SIFT descriptor by means of a concentric-rings model, as well as integrating the color invariant space and shape context with SIFT to construct the SCARF descriptor. The SCARF method developed is more robust than the conventional SIFT with respect to not only the color and photometrical variations but also the measuring similarity as a global variation between two shapes. A comparative evaluation of different descriptors is carried out showing that the SCARF approach provides better results than the other four state-of-the-art related methods.

[1]  Linda G. Shapiro,et al.  A SIFT descriptor with global context , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[2]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[3]  Ioannis Patras,et al.  Combining color and shape information for illumination-viewpoint invariant object recognition , 2006, IEEE Transactions on Image Processing.

[4]  Francesca Odone,et al.  SVD-matching using SIFT features , 2006, Graph. Model..

[5]  Jean-Michel Morel,et al.  ASIFT: A New Framework for Fully Affine Invariant Image Comparison , 2009, SIAM J. Imaging Sci..

[6]  Carsten Steger,et al.  An Unbiased Detector of Curvilinear Structures , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  P. Kubelka,et al.  New contributions to the optics of intensely light-scattering materials. , 1954, Journal of the Optical Society of America.

[8]  S. Govindarajulu,et al.  A Comparison of SIFT, PCA-SIFT and SURF , 2012 .

[9]  Gustavo Carneiro,et al.  Phase-Based Local Features , 2002, ECCV.

[10]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[11]  Maurizio Pilu,et al.  A direct method for stereo correspondence based on singular value decomposition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Kwanghoon Sohn,et al.  Haar-like compact local binary pattern for illumination-robust feature matching , 2012, J. Electronic Imaging.

[13]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Miao Qi,et al.  A Novel Watermarking Algorithm Based on Feature Points and SVD , 2009, 2009 International Conference on Computational Intelligence and Software Engineering.

[15]  Allen R. Hanson,et al.  Dynamic mutual calibration and view planning for cooperative mobile robots with panoramic virtual stereo vision , 2004, Comput. Vis. Image Underst..

[16]  Chengjun Liu,et al.  New colour SIFT descriptors for image classification with applications to biometrics , 2011, Int. J. Biom..

[17]  Luo Juan,et al.  A comparison of SIFT, PCA-SIFT and SURF , 2009 .

[18]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[19]  Arnold W. M. Smeulders,et al.  Color Based Object Recognition , 1997, ICIAP.

[20]  Guihua Zeng,et al.  Improved global context descriptor for describing interest regions , 2012 .

[21]  Xiaochun Cao,et al.  MIFT: A Mirror Reflection Invariant Feature Descriptor , 2009, ACCV.

[22]  Bo Geng,et al.  Query difficulty estimation for image retrieval , 2012, Neurocomputing.

[23]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[25]  Max A. Viergever,et al.  General intensity transformations and differential invariants , 1994, Journal of Mathematical Imaging and Vision.

[26]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Tardi Tjahjadi,et al.  Clique descriptor of affine invariant regions for robust wide baseline image matching , 2010, Pattern Recognit..

[28]  Alexandre Bernardino,et al.  Improving the SIFT descriptor with smooth derivative filters , 2009, Pattern Recognit. Lett..

[29]  Ali Shokoufandeh,et al.  View-based object recognition using saliency maps , 1999, Image Vis. Comput..

[30]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[31]  Aly A. Farag,et al.  CSIFT: A SIFT Descriptor with Color Invariant Characteristics , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[32]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[33]  Theo Gevers,et al.  Selection and Fusion of Color Models for Image Feature Detection , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  P. Kubelka,et al.  New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .

[35]  Bahram Javidi,et al.  Recent Developments in 3-D Imaging Technologies , 2010, Journal of Display Technology.