Robustness of embryonic spatial patterning in Drosophila melanogaster.

Publisher Summary Mathematical models of embryonic development can provide insights into the complex interactions between spatial variations in morphogens, signal transduction, and intracellular response in patterning processes. Mechanistic models of specific processes based on our current understanding of them provide an additional tool to help in understanding the complex regulation of development. The chapter discusses a number of different aspects of robustness in Drosophila embryonic patterning, and have shown how the models lead to new insights concerning scale-invariance in AP patterning, the role of network topology and signature in the switching network used for control of the segment polarity genes, and the role of signaling via heterodimers in dorsal–ventral (DV) patterning. The modular decomposition of DV patterning described in the chapter is based on the current understanding of the kinetic interactions between morphogens and inhibitors in the perivitelline (PV) space, and incorporates the various dimeric forms of inhibitors and signaling the bone morphogenetic proteins (BMPs). Scale-invariance is a basic feature of a number of developmental processes. A rather surprising result is that the robustness of DV spatial patterning can essentially be predicted from an analysis of the local dynamics. The analysis of the spatially distributed system corroborates the earlier results and provides further evidence for the selective advantage of using heterodimers for signal transduction and morphogenesis.

[1]  J. Goebels,et al.  Histochemical and autoradiographic study of the cultured rat visceral yolk sac. , 1986, Journal of embryology and experimental morphology.

[2]  S. Bergmann,et al.  Pre-Steady-State Decoding of the Bicoid Morphogen Gradient , 2007, PLoS biology.

[3]  B. Biehs,et al.  The Drosophila short gastrulation gene prevents Dpp from autoactivating and suppressing neurogenesis in the neuroectoderm. , 1996, Genes & development.

[4]  S. Leibler,et al.  Establishment of developmental precision and proportions in the early Drosophila embryo , 2002, Nature.

[5]  J. Claxton THE DETERMINATION OF PATTERNS WITH SPECIAL REFERENCE TO THAT OF THE CENTRAL PRIMARY SKIN FOLLICLES IN SHEEP. , 1964, Journal of theoretical biology.

[6]  R. Dorfman,et al.  Biphasic activation of the BMP pathway patterns the Drosophila embryonic dorsal region. , 2001, Development.

[7]  W. Bialek,et al.  Stability and Nuclear Dynamics of the Bicoid Morphogen Gradient , 2007, Cell.

[8]  Qing Nie,et al.  Formation of the BMP activity gradient in the Drosophila embryo. , 2005, Developmental cell.

[9]  Eduardo D. Sontag,et al.  Adaptation and regulation with signal detection implies internal model , 2003, Syst. Control. Lett..

[10]  R. Lehmann,et al.  Manipulating the anteroposterior pattern of the Drosophila embryo. , 1986, Journal of embryology and experimental morphology.

[11]  Robert Dillon,et al.  Pattern formation in generalized Turing systems , 1994 .

[12]  R. D,et al.  A Mathematical Model for Outgrowth and Spatial Patterning of the Vertebrate Limb Bud , 1999 .

[13]  Osamu Shimmi,et al.  Facilitated Transport of a Dpp/Scw Heterodimer by Sog/Tsg Leads to Robust Patterning of the Drosophila Blastoderm Embryo , 2005, Cell.

[14]  Yoshiki Sasai,et al.  A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin , 1995, Nature.

[15]  C. Tabin,et al.  Evidence for an Expansion-Based Temporal Shh Gradient in Specifying Vertebrate Digit Identities , 2004, Cell.

[16]  Qing Nie,et al.  Do morphogen gradients arise by diffusion? , 2002, Developmental cell.

[17]  Gary R. Grotendorst,et al.  Combinatorial signaling by Twisted Gastrulation and Decapentaplegic , 1997, Mechanisms of Development.

[18]  L. Stevens,et al.  Spatially Restricted Expression of pipe in the Drosophila Egg Chamber Defines Embryonic Dorsal–Ventral Polarity , 1998, Cell.

[19]  W. Gehring,et al.  The Drosophila sloppy paired locus encodes two proteins involved in segmentation that show homology to mammalian transcription factors. , 1992, Genes & development.

[20]  J. Timmer,et al.  Supporting Online Material Material and Methods , 2022 .

[21]  J. Massagué,et al.  Controlling TGF-β signaling , 2000, Genes & Development.

[22]  P. Ingham,et al.  Role of the Drosophila patched gene in positional signalling , 1991, Nature.

[23]  J. Posakony,et al.  Posterior stripe expression of hunchback is driven from two promoters by a common enhancer element. , 1995, Development.

[24]  E. Davidson,et al.  Gene regulatory networks for development. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  P. Carroad,et al.  Estimation of diffusion coefficients of proteins , 1980 .

[26]  N. Barkai,et al.  Robustness of the BMP morphogen gradient in Drosophila embryonic patterning , 2022 .

[27]  David M. Umulis,et al.  Robust, bistable patterning of the dorsal surface of the Drosophila embryo. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[28]  L. Wolpert Developmental Biology , 1968, Nature.

[29]  Dulos,et al.  Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. , 1990, Physical review letters.

[30]  K. Anderson,et al.  Plasma membrane localization of the Toll protein in the syncytial Drosophila embryo: importance of transmembrane signaling for dorsal-ventral pattern formation. , 1991, Development.

[31]  Sangbin Park,et al.  Interpretation of a BMP Activity Gradient in Drosophila Embryos Depends on Synergistic Signaling by Two Type I Receptors, SAX and TKV , 1998, Cell.

[32]  H. Othmer,et al.  The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. , 2003, Journal of theoretical biology.

[33]  David M. Umulis,et al.  Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing , 2005, Development.

[34]  T. Schüpbach,et al.  Windbeutel is required for function and correct subcellular localization of the Drosophila patterning protein Pipe. , 2000, Development.

[35]  W. Bialek,et al.  Probing the Limits to Positional Information , 2007, Cell.

[36]  L. Wolpert Positional information and the spatial pattern of cellular differentiation. , 1969, Journal of theoretical biology.

[37]  H G Othmer,et al.  Scale-invariance in reaction-diffusion models of spatial pattern formation. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[38]  David H. Sharp,et al.  Dynamic control of positional information in the early Drosophila embryo , 2004, Nature.

[39]  M. Kerszberg,et al.  Morphogen propagation and action: towards molecular models. , 1999, Seminars in cell & developmental biology.

[40]  Joel Keizer,et al.  Diffusion effects on rapid bimolecular chemical reactions , 1987 .

[41]  J. Wrana,et al.  The Xenopus Dorsalizing Factor noggin Ventralizes Drosophila Embryos by Preventing DPP from Activating Its Receptor , 1996, Cell.

[42]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[43]  S. Roth,et al.  The role of brinker in mediating the graded response to Dpp in early Drosophila embryos. , 1999, Development.

[44]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[45]  W. Bialek,et al.  Diffusion and scaling during early embryonic pattern formation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Stephen C. Ekker,et al.  Twisted gastrulation is a conserved extracellular BMP antagonist , 2001, Nature.

[47]  Nicholas T Ingolia,et al.  Topology and Robustness in the Drosophila Segment Polarity Network , 2004, PLoS biology.

[48]  M. Strigini Mechanisms of morphogen movement. , 2005, Journal of neurobiology.

[49]  Yu-Chiun Wang,et al.  Spatial bistability of Dpp–receptor interactions during Drosophila dorsal–ventral patterning , 2005, Nature.

[50]  Ken W. Y. Cho,et al.  Production of a DPP Activity Gradient in the Early Drosophila Embryo through the Opposing Actions of the SOG and TLD Proteins , 1997, Cell.

[51]  T. Bisseling,et al.  Model for the robust establishment of precise proportions in the early Drosophila embryo. , 2004, Journal of theoretical biology.

[52]  G. Odell,et al.  Design and constraints of the Drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches. , 2002, The Journal of experimental zoology.

[53]  J. Massagué,et al.  Controlling TGF-beta signaling. , 2000, Genes & development.

[54]  G. Odell,et al.  The segment polarity network is a robust developmental module , 2000, Nature.

[55]  Gregory T. Reeves,et al.  Quantitative models of developmental pattern formation. , 2006, Developmental cell.

[56]  Hans G. Othmer,et al.  Synchronized and Differentiated Modes of Cellular Dynamics , 1980 .

[57]  Hermann Haken,et al.  Dynamics of Synergetic Systems , 1980 .

[58]  T. Tabata,et al.  The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. , 1992, Genes & development.

[59]  Lewis Wolpert,et al.  Principles of Development , 1997 .

[60]  E. L. Ferguson,et al.  A positive role for Short gastrulation in modulating BMP signaling during dorsoventral patterning in the Drosophila embryo. , 2001, Development.

[61]  P. R. ten Wolde,et al.  Finding the center reliably: robust patterns of developmental gene expression. , 2005, Physical review letters.

[62]  L Wolpert,et al.  Mechanisms for positional signalling by morphogen transport: a theoretical study. , 1998, Journal of theoretical biology.

[63]  S. Leibler,et al.  Precise domain specification in the developing Drosophila embryo. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  O. Shimmi,et al.  Physical properties of Tld, Sog, Tsg and Dpp protein interactions are predicted to help create a sharp boundary in Bmp signals during dorsoventral patterning of the Drosophila embryo , 2003, Development.

[65]  K. Anderson,et al.  The spätzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo , 1994, Cell.

[66]  N. Dostatni,et al.  Bicoid Determines Sharp and Precise Target Gene Expression in the Drosophila Embryo , 2005, Current Biology.

[67]  B. Nagorcka,et al.  The role of a reaction--diffusion system in the formation of hair fibres. , 1982, Journal of theoretical biology.