Enhanced global primary production by biogenic aerosol via diffuse radiation fertilization

[1]  H. Graf,et al.  Emissions , 2021, The Green Building Materials Manual.

[2]  Atul K. Jain,et al.  Global Carbon Budget 2019 , 2019, Earth System Science Data.

[3]  M. Chipperfield,et al.  Impact on short-lived climate forcers increases projected warming due to deforestation , 2018, Nature Communications.

[4]  W. Buermann,et al.  Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century , 2016, Geophysical research letters.

[5]  M. Chipperfield,et al.  The TOMCAT global chemical transport model v1.6: description of chemical mechanism and model evaluation , 2016 .

[6]  J. Penner,et al.  How will SOA change in the future? , 2016 .

[7]  G. Mann,et al.  Impact of gas-to-particle partitioning approaches on the simulated radiative effects of biogenic secondary organic aerosol , 2015 .

[8]  N. Unger,et al.  Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution , 2015 .

[9]  O. Boucher,et al.  Why Does Aerosol Forcing Control Historical Global-Mean Surface Temperature Change in CMIP5 Models? , 2015 .

[10]  P. S. Praveen,et al.  The impact of residential combustion emissions on atmospheric aerosol, human health and climate , 2015 .

[11]  Duncan Borman,et al.  Impacts of aviation fuel sulfur content on climate and human health , 2015 .

[12]  J. Haywood,et al.  Fires increase Amazon forest productivity through increases in diffuse radiation , 2015 .

[13]  Ranga B. Myneni,et al.  Recent trends and drivers of regional sources and sinks of carbon dioxide , 2015 .

[14]  Gabriele Curci,et al.  The AeroCom evaluation and intercomparison of organic aerosol in global models , 2014, Atmospheric Chemistry and Physics.

[15]  P. Hari,et al.  CO2-induced terrestrial climate feedback mechanism: From carbon sink to aerosol source and back , 2014 .

[16]  A. Arneth,et al.  Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium , 2014, Journal of geophysical research. Atmospheres : JGR.

[17]  N. Unger,et al.  Isoprene emission variability through the twentieth century , 2013 .

[18]  S. Wofsy,et al.  What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network , 2013 .

[19]  Paulo Artaxo,et al.  The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon , 2013 .

[20]  G. Mann,et al.  Natural aerosol direct and indirect radiative effects , 2013 .

[21]  Piers M. Forster,et al.  The direct and indirect radiative effects of biogenic secondary organic aerosol , 2013 .

[22]  Erik Swietlicki,et al.  Warming-induced increase in aerosol number concentration likely to moderate climate change , 2013 .

[23]  L. Emmons,et al.  The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions , 2012 .

[24]  Joshua B. Fisher,et al.  Global nutrient limitation in terrestrial vegetation , 2012 .

[25]  G. Mann,et al.  Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model , 2012 .

[26]  W. J. Shuttleworth,et al.  Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional Reference Crop Evaporation over Land during the Twentieth Century , 2011 .

[27]  P. Cox,et al.  The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes , 2011 .

[28]  P. Cox,et al.  The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics , 2011 .

[29]  J. Randerson,et al.  Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .

[30]  J. Seinfeld,et al.  Global modeling of organic aerosol: the importance of reactive nitrogen (NO x and NO 3 ) , 2010 .

[31]  Martyn P. Chipperfield,et al.  Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model , 2010 .

[32]  M. Goulden,et al.  Effect of smoke on subcanopy shaded light, canopy temperature, and carbon dioxide uptake in an Amazon rainforest , 2010 .

[33]  Josep Peñuelas,et al.  BVOCs and global change. , 2010, Trends in plant science.

[34]  G. Mann,et al.  A review of natural aerosol interactions and feedbacks within the Earth system , 2010 .

[35]  A. Arneth,et al.  Terrestrial biogeochemical feedbacks in the climate system , 2010 .

[36]  D. R. Worsnop,et al.  Evolution of Organic Aerosols in the Atmosphere , 2009, Science.

[37]  C. N. Hewitt,et al.  Biogenic volatile organic compounds in the Earth system. , 2009, The New phytologist.

[38]  A. Arneth,et al.  Process-based modelling of biogenic monoterpene emissions combining production and release from storage , 2009 .

[39]  P. Cox,et al.  Impact of changes in diffuse radiation on the global land carbon sink , 2009, Nature.

[40]  Russell K. Monson,et al.  Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes) , 2008 .

[41]  Alexandre Bosc,et al.  Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana , 2008 .

[42]  Jean-Francois Lamarque,et al.  Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change , 2008 .

[43]  Qi Zhang,et al.  Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically‐influenced Northern Hemisphere midlatitudes , 2007 .

[44]  John H. Seinfeld,et al.  Biogenic secondary organic aerosol over the United States: Comparison of climatological simulations with observations , 2007 .

[45]  John H. C. Gash,et al.  Improving the representation of radiation interception and photosynthesis for climate model applications , 2007 .

[46]  G. Mann,et al.  A global off-line model of size-resolved aerosol microphysics: II. Identification of key uncertainties , 2005 .

[47]  Martyn P. Chipperfield,et al.  A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties , 2005 .

[48]  S. Gong,et al.  A parameterization of sea‐salt aerosol source function for sub‐ and super‐micron particles , 2003 .

[49]  Dennis D. Baldocchi,et al.  Response of a Deciduous Forest to the Mount Pinatubo Eruption: Enhanced Photosynthesis , 2003, Science.

[50]  Hans-F. Graf,et al.  The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years , 2002 .

[51]  D. Jacob,et al.  Global modeling of tropospheric chemistry with assimilated meteorology : Model description and evaluation , 2001 .

[52]  I. Noble,et al.  On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation , 2001, Oecologia.

[53]  A. Kettle,et al.  Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models , 2000 .

[54]  J. Tenhunen,et al.  A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus , 1999 .

[55]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[56]  M. Chipperfield,et al.  A tropospheric chemical‐transport model: Development and validation of the model transport schemes , 1999 .

[57]  R. Andres,et al.  A time‐averaged inventory of subaerial volcanic sulfur emissions , 1998 .

[58]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[59]  A. Slingo,et al.  Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model , 1996 .

[60]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[61]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[62]  I. C. Prentice,et al.  Process-based estimates of terrestrial ecosystem isoprene emissions , 2020 .

[63]  Atul K. Jain,et al.  Global Carbon Budget 2017 (in open review for Earth System Science Data). doi: 10.5194/essd-2017-123 , 2017 .

[64]  Anja Rammig,et al.  Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. , 2016, The New phytologist.

[65]  I. C. Prentice,et al.  Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO 2 -isoprene interaction , 2007 .

[66]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[67]  J. Penner,et al.  Aerosols, their Direct and Indirect Effects , 2001 .

[68]  N. Fuchs,et al.  HIGH-DISPERSED AEROSOLS , 1971 .

[69]  A. Arneth,et al.  Evaluation of a photosynthesis-based biogenic isoprene emission scheme in JULES and simulation of isoprene emissions under present-day climate conditions , 2010 .