GW100: A Plane Wave Perspective for Small Molecules.

In a recent work, van Setten and co-workers have presented a carefully converged G0W0 study of 100 closed shell molecules [ J. Chem. Theory Comput. 2015 , 11 , 5665 - 5687 ]. For two different codes they found excellent agreement to within a few 10 meV if identical Gaussian basis sets were used. We inspect the same set of molecules using the projector augmented wave method and the Vienna ab initio simulation package (VASP). For the ionization potential, the basis set extrapolated plane wave results agree very well with the Gaussian basis sets, often reaching better than 50 meV agreement. In order to achieve this agreement, we correct for finite basis set errors as well as errors introduced by periodically repeated images. For positive electron affinities differences between Gaussian basis sets and VASP are slightly larger. We attribute this to larger basis set extrapolation errors for the Gaussian basis sets. For quasi particle (QP) resonances above the vacuum level, differences between VASP and Gaussian basis sets are, however, found to be substantial. This is tentatively explained by insufficient basis set convergence of the Gaussian type orbital calculations as exemplified for selected test cases.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  H. Tasman,et al.  Double‐Oven Experiments with Lithium Halide Vapors , 1962 .

[3]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[4]  D. Hildenbrand,et al.  Heat of Formation of Be2O(g) by Mass Spectrometry , 1964 .

[5]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[6]  D. Hildenbrand Mass‐Spectrometric Studies of Bonding in the Group IIA Fluorides , 1968 .

[7]  J. Murrell,et al.  The photoelectron spectra of the halomethanes , 1971 .

[8]  A. W. Potts,et al.  The photoelectron spectra of methane, silane, germane and stannane , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  W. Thiel,et al.  Photoionization cross sections: He I- and He II-photoelectron spectra of homologous oxygen and sulphur compounds , 1974 .

[10]  T. A. Williams,et al.  The observation of “forbidden” transitions in He II photoelectron spectra , 1974 .

[11]  S. Nagakura,et al.  Photoelectron spectra of aminopyridines and cyanopyridines , 1974 .

[12]  R. Manne,et al.  Photoelectron spectra of iodo ethylenes , 1974 .

[13]  Bonding studies of boron and the Group 3–5 elements. Part XV. He(I) photoelectron spectra of monomeric Group 3 trihalide, trimethyl, and mixed halogenomethyl species , 1975 .

[14]  N. Hush,et al.  Ionization potentials and donor properties of nucleic acid bases and related compounds , 1975 .

[15]  Photoelectron spectra of OCSe and SCSe , 1975 .

[16]  D. A. Shirley,et al.  Molecular photoelectron spectroscopy at 132.3 eV. The second‐row hydrides , 1975 .

[17]  G. A. Baker Essentials of Padé approximants , 1975 .

[18]  H. Bock,et al.  PHOTOELECTRON SPECTRA AND MOLECULAR PROPERTIES. LI. IONIZATION POTENTIALS OF SILANES SINH2N+2 , 1976 .

[19]  S. McGlynn,et al.  Photoelectron spectroscopy of carbonyls. Ureas, uracils, and thymine 1,2. , 1976, Journal of the American Chemical Society.

[20]  J. Dyke,et al.  HeI photoelectron spectrum of the P2(X1∑+g) molecule , 1976 .

[21]  L. Klasinc,et al.  High resolution photoelectron spectrum of hydrazoic acid , 1976 .

[22]  Vacuum ultraviolet photoelectron spectrum of the PN(X1Σ+) molecule , 1977 .

[23]  J. Eland,et al.  Photoionization mass spectrometry of HI and DI at high resolution , 1977 .

[24]  A. R. Burgess,et al.  Study of some medium size alcohols and hydroperoxides by photoelectron spectroscopy , 1977 .

[25]  A. W. Potts,et al.  Photoelectron Studies of Ionic Materials using Molecular Beam Techniques , 1977 .

[26]  Alfonso Baldereschi,et al.  Mean-value point and dielectric properties of semiconductors and insulators , 1978 .

[27]  S. Leutwyler,et al.  On Metal‐Atom Clusters IV. Photoionization thresholds and multiphoton ionization spectra of alkali‐metal molecules , 1978 .

[28]  R. Roberge,et al.  The far ultraviolet and HeI photoelectron spectra of alkyl and fluorine substituted silane derivatives , 1978 .

[29]  R. Dunbar,et al.  Photodissociation spectroscopy and structural rearrangements in ions of cyclooctatetraene, styrene, and related molecules , 1978 .

[30]  W. Hanke,et al.  Many-Particle Effects in the Optical Excitations of a Semiconductor , 1979 .

[31]  A. W. Potts,et al.  An investigation of the valence shell electronic structure of alkaline earth halides by using ab initio s. c. f. calculations and photoelectron spectroscopy , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[32]  R. Platenkamp,et al.  The electronic structure of flavin derivatives: Part I. Ab initio calculations for 1H-alloxazine and 10H-isoalloxazine, their reduced derivatives and related compounds; assignments of photoelectron spectra1 , 1980 .

[33]  P. Lebreton,et al.  Ultraviolet photoelectron studies of the ground-state electronic structure and gas-phase tautomerism of purine and adenine , 1980 .

[34]  G. Bieri,et al.  30.4-nm He(II) photoelectron spectra of organic molecules: Part I. Hydrocarbons , 1980 .

[35]  Hans Jurgen Mattausch,et al.  DYNAMICAL CORRELATION EFFECTS ON THE QUASIPARTICLE BLOCH STATES OF A COVALENT CRYSTAL , 1980 .

[36]  W. Niessen,et al.  30.4-nm He (II) photoelectron spectra of organic molecules: Part III. Oxo-compounds (C, H, O)☆ , 1980 .

[37]  W. Niessen,et al.  The He(II) photoelectron spectra of the fluorosubstituted ethylenes and their analysis by the Green's function method , 1981 .

[38]  W. Niessen,et al.  30.4-nm He(II) photoelectron spectra of organic molecules: Part V. Hetero-compounds containing first-row elements (C, H, B, N, O, F) , 1981 .

[39]  W. Niessen,et al.  30.4-nm He(II) Photoelectron spectra of organic molecules: Part IV. Fluoro-compounds (C, H, F) , 1981 .

[40]  E. Chen,et al.  Electron attachment to halogens , 1981 .

[41]  I. Powis,et al.  A photoelectron—photoion coincidence study of acetaldehyde and ethylene oxide molecular ions , 1982 .

[42]  D. Hildenbrand,et al.  Vaporization of arsenic trisulfide and the dissociation energy of arsenic monosulfide , 1982 .

[43]  R. Kemp,et al.  Lewis base behavior of methylated and fluorinated phosphines. Photoelectron spectroscopic investigation , 1982 .

[44]  G. Bieri,et al.  30.4-nm He (II) photoelectron spectra of organic molecules 1Part VII. Miscellaneous compounds , 1982 .

[45]  R. Srivastava,et al.  Mass-spectrometric determination of the thermodynamics of potassium hydroxide and minor potassiumcontaining species required in magnetohydrodynamic power systems , 1982 .

[46]  W. Thiel,et al.  Experimental and theoretical investigation of the photoionization of hydrogen cyanide , 1982 .

[47]  W. Hanke,et al.  Dynamical aspects of correlation corrections in a covalent crystal , 1982 .

[48]  Effects of relativity in the He(I) Photoelecron Spectrum of CI4 , 1982 .

[49]  R. Fantoni,et al.  An (e, 2e) spectroscopic invistigation and a green's function study of the ionization of chloro- and bromo-ethylene , 1983 .

[50]  M. Dillon,et al.  Electron spectroscopy of hydrogen chloride from 5 to 19 eV , 1984 .

[51]  H. Shiromaru,et al.  Photoelectron Angular Distribution and Assignment of Photoelectron Spectrum of Ozone , 1984 .

[52]  H. V. Lonkhuyzen,et al.  High-resolution UV photoelectron spectroscopy of diatomic halogens , 1984 .

[53]  J. G. Snijders,et al.  Ionization energies of the diatomic halogens and interhalogens studied with relativistic Hartree-Fock-Slater calculations , 1984 .

[54]  R. Wightman,et al.  Electron transfer from aromatic hydrocarbons and their .pi.-complexes with metals. Comparison of the standard oxidation potentials and vertical ionization potentials , 1984 .

[55]  R. Srivastava,et al.  Electron and thermal dissociation of BF3(g) , 1984 .

[56]  P. Rosmus,et al.  A study of aluminium monofluoride and aluminium trifluoride by high-temperature photoelectron spectroscopy , 1984 .

[57]  M. Kappes,et al.  Photoionization measurements on dialkali monohalides generated in supersonic nozzle beams , 1985 .

[58]  K. Ohno,et al.  Variations in reactivity of lone-pair electrons due to intramolecular hydrogen bonding as observed by Penning ionization electron spectroscopy , 1985 .

[59]  J. Nichols,et al.  The ionization potentials of F2: A comparison of multiconfigurational electron propagator (MCEP) with other large scale methods using the same basis set , 1986 .

[60]  W. C. Lineberger,et al.  Electron affinities of the alkali halides and the structure of their negative ions , 1986 .

[61]  M. Nimlos,et al.  Photoelectron spectroscopy of sulfur-containing anions (SO2-, S3-, and S2O-) , 1986 .

[62]  Louie,et al.  Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. , 1986, Physical review. B, Condensed matter.

[63]  Massenspektroskopische Untersuchung der Borfluorid‐Komplexe ABF4 , 1987 .

[64]  Wetzel,et al.  Absolute cross sections for electron-impact ionization of the rare-gas atoms by the fast-neutral-beam method. , 1987, Physical review. A, General physics.

[65]  R. Ballard,et al.  He(I) photoelectron studies of liquids and gases , 1987 .

[66]  I. I. Furlei,et al.  Photoelectronic spectra of fluorine-containing aromatic amines , 1987 .

[67]  B. Ruscic,et al.  Photoionization studies of (BH3)n (n=1,2) , 1988 .

[68]  H. W. Sarkas,et al.  Photoelectron spectra of the alkali metal cluster anions: Na−n=2–5, K−n=2–7, Rb−n=2–3, and Cs−n=2–3 , 1989 .

[69]  Photoelectron spectra and molecular properties. 112. Photoelectron and photoionization mass spectra of the fluoroamines NH3-nFn , 1989 .

[70]  Mass spectrometry of resonance capture of electrons and photo-electron spectroscopy of molecules of ethylene oxide, ethylene sulfide, and their derivatives , 1989 .

[71]  G. Ellison,et al.  Photoelectron spectroscopy of BH−3 , 1989 .

[72]  McCormack,et al.  Measurement of high Rydberg states and the ionization potential of H2. , 1989, Physical review. A, General physics.

[73]  C. Lange,et al.  He(I) photoelectron spectroscopy of the gallium monohalides , 1990 .

[74]  H. Oechsner,et al.  Electron impact ionization of small silver and copper clusters , 1990 .

[75]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[76]  T. Kitsopoulos,et al.  Vibrationally Resolved Spectra of C2-C11 by Anion Photoelectron Spectroscopy , 1991 .

[77]  P. Armentrout,et al.  Collision‐induced dissociation and charge transfer reactions of SF+x (x=1–5): Thermochemistry of sulfur fluoride ions and neutrals , 1992 .

[78]  P. Dugourd,et al.  Measurements of lithium cluster ionization potentials , 1992 .

[79]  K. J. Taylor,et al.  Ultraviolet photoelectron spectra of coinage metal clusters , 1992 .

[80]  J. A. Zimmerman,et al.  Ionization potentials of small carbon clusters , 1993 .

[81]  W. Demtröder,et al.  High‐resolution isotope selective laser spectroscopy of Ag2 molecules , 1993 .

[82]  K. Weitzel,et al.  ZEKE-PEPICO investigations of dissociation energies in ionic reactions , 1994 .

[83]  P. Armentrout,et al.  Guided ion beam studies of reactions of alkaline earth ions with O2 , 1994 .

[84]  Don W. Arnold,et al.  Study of low‐lying electronic states of ozone by anion photoelectron spectroscopy of O−3 , 1994 .

[85]  H. W. Sarkas,et al.  Photoelectron spectroscopy of lithium hydride anion , 1994 .

[86]  P. Pieperhoff,et al.  Structure and spectroscopy of phosphorus cluster anions : theory (simulated annealing) and experiment (photoelectron detachment) , 1995 .

[87]  S. Hoshino,et al.  Penning Ionization of HCHO, CH2CH2, and CH2CHCHO by Collision with He(23S) Metastable Atoms , 1995 .

[88]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[89]  T. Miller,et al.  Negative ion chemistry of SF4 , 1995 .

[90]  Gerd Ganteför,et al.  Electronic shells or molecular orbitals: Photoelectron spectra of Ag−n clusters , 1995 .

[91]  J. Dyke,et al.  A study of the transition metal tetrafluorides (TiF4, ZrF4, HfF4) using high temperature ultraviolet photoelectron spectroscopy , 1997 .

[92]  Daniel M. Neumark,et al.  Anion spectroscopy of uracil, thymine and the amino-oxo and amino-hydroxy tautomers of cytosine and their water clusters , 1998 .

[93]  G. Gallup,et al.  ELECTRON ATTACHMENT ENERGIES OF THE DNA BASES , 1998 .

[94]  J. Nilles,et al.  Photoelectron spectroscopy of As−, As2−, As3−, As4−, and As5− , 1998 .

[95]  Electron Attachment and Detachment: Cyclooctatetraene , 2002 .

[96]  T. Kotani,et al.  All-electron self-consistent GW approximation: application to Si, MnO, and NiO. , 2004, Physical review letters.

[97]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[98]  G. Kresse,et al.  Implementation and performance of the frequency-dependent GW method within the PAW framework , 2006 .

[99]  E. Gross,et al.  Exact coulomb cutoff technique for supercell calculations , 2006, cond-mat/0601031.

[100]  Lucia Reining,et al.  Effect of self-consistency on quasiparticles in solids , 2006 .

[101]  Takao Kotani,et al.  Quasiparticle self-consistent GW theory. , 2006, Physical review letters.

[102]  Georg Kresse,et al.  Self-consistent G W calculations for semiconductors and insulators , 2007 .

[103]  G. Patwari,et al.  Photoelectron spectroscopy of hydrated hexafluorobenzene anions. , 2007, The Journal of chemical physics.

[104]  M. Shishkin,et al.  Quasiparticle band structure based on a generalized Kohn-Sham scheme , 2007 .

[105]  L. Curtiss,et al.  Gaussian-4 theory. , 2007, The Journal of chemical physics.

[106]  X. Gonze,et al.  Accurate GW self-energies in a plane-wave basis using only a few empty states: Towards large systems , 2008 .

[107]  Georg Kresse,et al.  Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation-dissipation theory , 2008 .

[108]  S. Louie,et al.  Quasiparticle band gap of ZnO: high accuracy from the conventional G⁰W⁰ approach. , 2010, Physical review letters.

[109]  Photoelectron imaging and theoretical studies of group 11 cyanides MCN (M = Cu, Ag, Au). , 2010, The journal of physical chemistry. A.

[110]  Claudio Attaccalite,et al.  First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications , 2010, 1011.3933.

[111]  S. Rayne,et al.  Survey of main group compounds (HBr) at the Gaussian-4 level of theory: Adiabatic ionization energies and enthalpies of formation , 2011 .

[112]  S. Blugel,et al.  Band convergence and linearization error correction of all-electron GW calculations: The extreme case of zinc oxide , 2011, 1102.3255.

[113]  D. Sánchez-Portal,et al.  An O(N3) implementation of Hedin's GW approximation for molecules. , 2011, The Journal of chemical physics.

[114]  San-Huang Ke,et al.  All-electron GW methods implemented in molecular orbital space: Ionization energy and electron affinity of conjugated molecules , 2010, 1012.1084.

[115]  W. Marsden I and J , 2012 .

[116]  A. Krasheninnikov,et al.  van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. , 2012, Physical review letters.

[117]  David A. Strubbe,et al.  BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures , 2011, Comput. Phys. Commun..

[118]  Angel Rubio,et al.  Unified description of ground and excited states of finite systems: The self-consistent GW approach , 2012, 1202.3547.

[119]  Fabien Bruneval,et al.  Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies. , 2012, The Journal of chemical physics.

[120]  Ali Alavi,et al.  Convergence of many-body wave-function expansions using a plane-wave basis: From homogeneous electron gas to solid state systems , 2012, 1202.4990.

[121]  S. Cavanagh,et al.  High-resolution photoelectron spectroscopy of linear ← bent polyatomic photodetachment transitions: the electron affinity of CS2. , 2012, The Journal of chemical physics.

[122]  A. Tkatchenko,et al.  Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions , 2012, 1201.0655.

[123]  Fabien Bruneval,et al.  Benchmarking the Starting Points of the GW Approximation for Molecules. , 2013, Journal of chemical theory and computation.

[124]  A. Schindlmayr Analytic evaluation of the electronic self-energy in the GW approximation for two electrons on a sphere , 2013, 1302.6368.

[125]  Michiel J. van Setten,et al.  The GW-Method for Quantum Chemistry Applications: Theory and Implementation. , 2013, Journal of chemical theory and computation.

[126]  Angel Rubio,et al.  Self-consistent GW: an all-electron implementation with localized basis functions , 2013, 1304.4039.

[127]  Dietrich Foerster,et al.  Fully self-consistent GW and quasiparticle self-consistent GW for molecules , 2014, 1404.1715.

[128]  Georg Kresse,et al.  Low Scaling Algorithms for the Random Phase Approximation: Imaginary Time and Laplace Transformations. , 2014, Journal of chemical theory and computation.

[129]  Jivr'i Klimevs,et al.  Predictive GW calculations using plane waves and pseudopotentials , 2014, 1404.3101.

[130]  S. Louie,et al.  Effects of self-consistency and plasmon-pole models on G W calculations for closed-shell molecules , 2014, 1409.2901.

[131]  Georg Kresse,et al.  Cubic scaling algorithm for the random phase approximation: Self-interstitials and vacancies in Si , 2014 .

[132]  F. Weigend,et al.  Off-Diagonal Self-Energy Terms and Partially Self-Consistency in GW Calculations for Single Molecules: Efficient Implementation and Quantitative Effects on Ionization Potentials. , 2015, Journal of chemical theory and computation.

[133]  Jonathan Laflamme Janssen,et al.  Efficient dielectric matrix calculations using the Lanczos algorithm for fast many-body $G_0W_0$ implementations , 2014, 1408.3036.

[134]  G. Galli,et al.  Large scale GW calculations. , 2015, Journal of chemical theory and computation.

[135]  Jürg Hutter,et al.  GW in the Gaussian and Plane Waves Scheme with Application to Linear Acenes. , 2016, Journal of chemical theory and computation.

[136]  Georg Kresse,et al.  Cubic scaling G W : Towards fast quasiparticle calculations , 2016, 1607.02859.

[137]  Michiel J. van Setten,et al.  Quasi-Particle Self-Consistent GW for Molecules. , 2016, Journal of chemical theory and computation.

[138]  I. Hamada,et al.  Implementation and Validation of Fully Relativistic GW Calculations: Spin-Orbit Coupling in Molecules, Nanocrystals, and Solids. , 2016, Journal of chemical theory and computation.

[139]  Zach DeVito,et al.  Opt , 2017 .