New Susceptibility Loci Associated with Kidney Disease in Type 1 Diabetes

Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS) of T1D DN comprising ∼2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2×10−8) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0×10−9). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-β1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1×10−7), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.

Benjamin J. Keller | Cameron D. Palmer | A. Paterson | J. Hirschhorn | L. Groop | S. Bull | H. Parving | D. Tregouet | V. Rigalleau | D. Trégouët | J. Tuomilehto | J. Florez | C. Guiducci | S. Hadjadj | C. Palmer | C. Ladenvall | R. Hanson | D. Gordin | C. Forsblom | P. Groop | L. Tarnow | M. Marre | C. Sarti | M. Kretzler | D. Mirel | R. Nelson | R. Salem | R. Roussel | E. Brennan | A. McKnight | N. Sandholm | E. Ahlqvist | S. M. Hosseini | A. Maxwell | H. Falhammar | H. Tikkanen | F. Martin | K. Tryggvason | H. Gu | P. Rossing | P. Lahermo | A. Boright | D. Waggott | V. Harjutsalo | L. Thorn | J. Wadén | N. Tolonen | M. Saraheimo | V. Mäkinen | M. Lehto | K. Brismar | H. Colhoun | G. Gill | S. Bain | D. Sadlier | C. Godson | D. Savage | A. Möllsten | O. Heikkilä | K. Hietala | J. Kytö | M. Rosengård-Bärlund | M. Parkkonen | G. McKay | A. Soro-Paavonen | B. Keller | M. Lajer | J. Pitkäniemi | Andrew W. Taylor | Anna M. Österholm | D. Cimponeriu | M. Stavarachi | Huateng Huang | P. Lefèbvre | S. Maestroni | C. Serafinceanu | T. Isakova | F. Alhenc-Gelas | R. Salem | W. Williams | M. Moța | M. Ioana | Harshal A Deshmukh | G. Zerbini | R. Lithovius | A. Ahola | A. Syreeni | J. Hirschhorn | A. Maestroni | J. Söderlund | E. Swan | T. Gu | S. Prior | E. Moța | H. Deshmukh | E. Fagerholm | B. He | N. Panduru | G. Mckay | Cameron Palmer | Andrew M. Taylor | A. Osterholm | A. Soro‐Paavonen | Anne-May Österholm | G. Gill | Andrew Taylor | C. Palmer | Andrew Taylor | Alexander P Maxwell | R. M. Salem | A. P. Maxwell | Raija Lithovius | Elizabeth J. Swan

[1]  M. Rastaldi,et al.  Enhanced Expression of Janus Kinase–Signal Transducer and Activator of Transcription Pathway Members in Human Diabetic Nephropathy , 2009, Diabetes.

[2]  E. Ritz,et al.  Clinical manifestation and natural history of diabetic nephropathy. , 2011, Contributions to nephrology.

[3]  R. Harris,et al.  ErbB4 isoforms selectively regulate growth factor induced Madin-Darby canine kidney cell tubulogenesis. , 2007, Molecular biology of the cell.

[4]  A. Barton,et al.  Identification of AF4/FMR2 family, member 3 (AFF3) as a novel rheumatoid arthritis susceptibility locus and confirmation of two further pan-autoimmune susceptibility genes , 2009, Human molecular genetics.

[5]  L. Kiemeney,et al.  Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. , 2011, New England Journal of Medicine.

[6]  O. Britanova,et al.  The mouse Laf4 gene: exon/intron organization, cDNA sequence, alternative splicing, and expression during central nervous system development. , 2002, Genomics.

[7]  J. Wetzels,et al.  The changing natural history of nephropathy in type I diabetes. , 1986, The American journal of medicine.

[8]  Stephen S. Rich,et al.  Genome-Wide Association Scan for Diabetic Nephropathy Susceptibility Genes in Type 1 Diabetes , 2009, Diabetes.

[9]  Rüdiger Klein,et al.  Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor , 1995, Nature.

[10]  F. Scolari,et al.  The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. , 2011, Kidney international.

[11]  D. Stern,et al.  Neural and mammary gland defects in ErbB4 knockout mice genetically rescued from embryonic lethality , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Mark N. Wass,et al.  Genetic loci influencing kidney function and chronic kidney disease , 2010, Nature Genetics.

[13]  C. Cohen,et al.  Gene Expression Analysis in Microdissected Renal Tissue , 2002, Nephron.

[14]  J. Gécz,et al.  Functional characterization of the AFF (AF4/FMR2) family of RNA-binding proteins: insights into the molecular pathology of FRAXE intellectual disability. , 2011, Human molecular genetics.

[15]  Yurii S. Aulchenko,et al.  Multiple loci associated with indices of renal function and chronic kidney disease , 2009, Nature Genetics.

[16]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[17]  Christian Gieger,et al.  New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk , 2010, Nature Genetics.

[18]  Merlin C. Thomas,et al.  Competing-risk analysis of ESRD and death among patients with type 1 diabetes and macroalbuminuria. , 2011, Journal of the American Society of Nephrology : JASN.

[19]  S. Pradervand,et al.  Molecular clock is involved in predictive circadian adjustment of renal function , 2009, Proceedings of the National Academy of Sciences.

[20]  S. Heath,et al.  HLA has strongest association with IgA nephropathy in genome-wide analysis. , 2010, Journal of the American Society of Nephrology : JASN.

[21]  S. Rosset,et al.  The population genetics of chronic kidney disease: insights from the MYH9–APOL1 locus , 2011, Nature Reviews Nephrology.

[22]  N. Hastie,et al.  ErbB4 modulates tubular cell polarity and lumen diameter during kidney development. , 2012, Journal of the American Society of Nephrology : JASN.

[23]  Michael Boehnke,et al.  LocusZoom: regional visualization of genome-wide association scan results , 2010, Bioinform..

[24]  R. Myers,et al.  Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data , 2005, Nucleic acids research.

[25]  H. Parving,et al.  Genetic Examination of SETD7 and SUV39H1/H2 Methyltransferases and the Risk of Diabetes Complications in Patients With Type 1 Diabetes , 2011, Diabetes.

[26]  Robert H. Jenkins,et al.  Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. , 2010, Journal of the American Society of Nephrology : JASN.

[27]  R. Butkowski,et al.  Differential expression of basement membrane collagen chains in diabetic nephropathy. , 1991, The American journal of pathology.

[28]  J. Skupień,et al.  Risk for ESRD in type 1 diabetes remains high despite renoprotection. , 2011, Journal of the American Society of Nephrology : JASN.

[29]  D. Reich,et al.  MYH9 is associated with nondiabetic end-stage renal disease in African Americans , 2008, Nature Genetics.

[30]  Christian Gieger,et al.  Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk , 2011, Nature.

[31]  L. Kiemeney,et al.  Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. , 2011, The New England journal of medicine.

[32]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[33]  Jane Worthington,et al.  Extended Report , 2022 .

[34]  Patrick J Heagerty,et al.  Temporal trends in the prevalence of diabetic kidney disease in the United States. , 2011, JAMA.

[35]  Raghu Kalluri,et al.  The basics of epithelial-mesenchymal transition. , 2009, The Journal of clinical investigation.

[36]  References , 1971 .

[37]  F. Martin,et al.  Suppression Subtractive Hybridization Identifies High Glucose Levels as a Stimulus for Expression of Connective Tissue Growth Factor and Other Genes in Human Mesangial Cells* , 1999, The Journal of Biological Chemistry.

[38]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[39]  Uwe Völker,et al.  New loci associated with kidney function and chronic kidney disease , 2010, Nature Genetics.

[40]  M. Gessler,et al.  Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. , 2010, The Journal of clinical investigation.

[41]  Ayellet V. Segrè,et al.  Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits , 2010, PLoS genetics.

[42]  A. McKnight,et al.  A GREM1 gene variant associates with diabetic nephropathy. , 2010, Journal of the American Society of Nephrology : JASN.

[43]  R. Collins,et al.  Newly identified loci that influence lipid concentrations and risk of coronary artery disease , 2008, Nature Genetics.

[44]  L. Staudt,et al.  LAF-4 encodes a lymphoid nuclear protein with transactivation potential that is homologous to AF-4, the gene fused to MLL in t(4;11) leukemias. , 1996, Blood.

[45]  N. Henninger,et al.  A Mutation in the Mouse Chd2 Chromatin Remodeling Enzyme Results in a Complex Renal Phenotype , 2009, Kidney and Blood Pressure Research.

[46]  Thomas Meitinger,et al.  Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution , 2011, Nature Genetics.

[47]  J. Tuomilehto,et al.  Population-based assessment of familial clustering of diabetic nephropathy in type 1 diabetes. , 2004, Diabetes.

[48]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[49]  Quan Dong Nguyen,et al.  Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. , 2003, JAMA.

[50]  M. Steffes,et al.  Differential distribution of type IV collagen chains in patients with diabetic nephropathy in non-insulin-dependent diabetes mellitus. , 1995, Nephron.

[51]  D. Higgins,et al.  Co-regulation of Gremlin and Notch signalling in diabetic nephropathy. , 2008, Biochimica et biophysica acta.

[52]  S. Klahr,et al.  Transforming growth factor-beta induces renal epithelial jagged-1 expression in fibrotic disease. , 2002, Journal of the American Society of Nephrology : JASN.

[53]  D. Chasman,et al.  Multiple new genetic loci associated with kidney function and Chronic Kidney Disease: The CKDGen Consortium , 2010 .

[54]  Philip M Kluin,et al.  LAF4, an AF4‐related gene, is fused to MLL in infant acute lymphoblastic leukemia , 2002, Genes, chromosomes & cancer.

[55]  Thomas Meitinger,et al.  Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution , 2010, Nature Genetics.

[56]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[57]  John A. Todd,et al.  Statistical colocalization of monocyte gene expression and genetic risk variants for type 1 diabetes , 2012, Human molecular genetics.

[58]  G. Dressler Another niche for Notch. , 2008, Kidney international.

[59]  Richard M. R. Coulson,et al.  T1DBase: update 2011, organization and presentation of large-scale data sets for type 1 diabetes research , 2010, Nucleic Acids Res..

[60]  Melissa J. Morine,et al.  Next-generation sequencing identifies TGF-β1-associated gene expression profiles in renal epithelial cells reiterated in human diabetic nephropathy. , 2012, Biochimica et biophysica acta.

[61]  Jimmy Lin,et al.  Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4 , 2009, Nature Genetics.

[62]  D. Clayton,et al.  Genome-wide association study and meta-analysis finds over 40 loci affect risk of type 1 diabetes , 2009, Nature Genetics.

[63]  R. Nelson,et al.  Detection of renal function decline in patients with diabetes and normal or elevated GFR by serial measurements of serum cystatin C concentration: results of a 4-year follow-up study. , 2005, Journal of the American Society of Nephrology : JASN.

[64]  C. Bogardus,et al.  A Genome‐Wide Association Study of BMI in American Indians , 2011, Obesity.