Inferring the Subsurface Structural Covariance Model Using Cross‐Borehole Ground Penetrating Radar Tomography
暂无分享,去创建一个
[1] Andrew Binley,et al. Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution‐dependent limitations , 2005 .
[2] L. Mansinha,et al. Radar Determination of the Spatial Structure of Hydraulic Conductivity , 2003, Ground water.
[3] A. Tarantola,et al. Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .
[4] J. Chilès,et al. Geostatistics: Modeling Spatial Uncertainty , 1999 .
[5] Rosemary Knight,et al. GEOSTATISTICAL ANALYSIS OF GROUND-PENETRATING RADAR DATA : A MEANS OF DESCRIBING SPATIAL VARIATION IN THE SUBSURFACE , 1998 .
[6] Y. Rubin,et al. Spatial correlation structure estimation using geophysical and hydrogeological data , 1999 .
[7] R. M. Lark,et al. Estimating Variogram Uncertainty , 2004 .
[8] Michael Fehler,et al. Traveltime tomography: A comparison of popular methods , 1991 .
[9] Erwan Gloaguen,et al. Borehole radar velocity inversion using cokriging and cosimulation , 2005 .
[10] Stefan Finsterle,et al. Estimation of field‐scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data , 2005 .
[11] A. Binley,et al. Improved hydrogeophysical characterization using joint inversion of cross‐hole electrical resistance and ground‐penetrating radar traveltime data , 2006 .
[12] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[13] G. Böhm,et al. A geostatistical framework for incorporating seismic tomography auxiliary data into hydraulic conductivity estimation , 1998 .
[14] R. Olea. Geostatistics for Natural Resources Evaluation By Pierre Goovaerts, Oxford University Press, Applied Geostatistics Series, 1997, 483 p., hardcover, $65 (U.S.), ISBN 0-19-511538-4 , 1999 .
[15] Erwan Gloaguen,et al. bh_tomo - a Matlab borehole georadar 2D tomography package , 2007, Comput. Geosci..
[16] Donald W. Marquaridt. Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation , 1970 .
[17] George E. P. Box,et al. Bayesian Inference in Statistical Analysis: Box/Bayesian , 1992 .
[18] F. Day‐Lewis,et al. Assessing the resolution‐dependent utility of tomograms for geostatistics , 2004 .
[19] J. Scales,et al. Resolution of seismic waveform inversion: Bayes versus Occam , 1996 .
[20] G. C. Tiao,et al. Bayesian inference in statistical analysis , 1973 .
[21] Andrew Binley,et al. Monitoring Unsaturated Flow and Transport Using Cross‐Borehole Geophysical Methods , 2008 .
[22] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[23] Clayton V. Deutsch,et al. Calculation of Uncertainty in the Variogram , 2002 .
[24] A. Tarantola,et al. Linear inverse Gaussian theory and geostatistics , 2006 .
[25] Thomas Mejer Hansen,et al. VISIM: Sequential simulation for linear inverse problems , 2008, Comput. Geosci..
[26] R. Parker,et al. Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .
[27] J. J. Peterson. Pre-inversion Corrections and Analysis of Radar Tomographic Data , 2001 .
[28] Harry M. Jol,et al. A comparison of the correlation structure in GPR images of deltaic and barrier‐spit depositional environments , 2000 .
[29] Xavier Emery,et al. Testing the correctness of the sequential algorithm for simulating Gaussian random fields , 2004 .
[30] Eulogio Pardo-Igúzquiza,et al. Variance–Covariance Matrix of the Experimental Variogram: Assessing Variogram Uncertainty , 2001 .
[31] H. Maurer,et al. Stochastic regularization: Smoothness or similarity? , 1998 .
[32] Harry M. Jol,et al. The role of ground penetrating radar and geostatistics in reservoir description , 1997 .