Proton and Protonic Species: The Hidden Face of Solid State Chemistry. How to Measure H‐Content in Materials?

The first objectives of Chemistry are the description of the reactions and the determination of the composition of each compound involved in a process. Solid State Chemistry tries to establish the composition and the structure, the (micro/nano)structure as well as the relationship between composition, structure, and material properties. In the case of Hydrogen element, most of the literature data do not follow this approach: the contents of protons and associated protonic species are rarely measured. Based on the examples of proton conducting materials with different water content: (i) high (sol–gel materials), (ii) medium (polyaniline (PANI) polymer and salts), and (iii) anhydrous (protonated perovskites), we will discuss the main methods (TGA, thermal expansion, infrared and Raman spectroscopy, incoherent (elastic, quasi- and in-elastic) and coherent neutron scattering, neutronography, NRA, RBS/ERDA, ERCS, etc.) able to detect/measure the proton content and/or to identify the nature of the protonic species and their interaction with the host framework: hydroxyl ion, “free” proton, physi/chemi-sorbed water, strong H-bonded water, proton hydrates, aquo-hydroxycarbonates, etc. Emphasis is given to the difficulties encountered for the identification and the quantification of protonic species and the way to overcome them, in particular the discrimination between the surface and bulk moieties.

[1]  A. Kahn,et al.  β-Alumina, a typical solid electrolyte: latest developments in fundamental approach and in battery utilization , 1984 .

[2]  Asger B. Hansen,et al.  Wax precipitation from North Sea crude oils. 2. Solid-phase content as function of temperature determined by pulsed NMR , 1991 .

[3]  K. Kreuer First published online as a Review in Advance on April 9, 2003 PROTON-CONDUCTING OXIDES , 2022 .

[4]  P. Colomban,et al.  EPR study of ordering in stoichiometric β‐aluminate , 1983 .

[5]  Arthur J. Epstein,et al.  Polyanilines: a novel class of conducting polymers , 1989 .

[6]  J. Boilot,et al.  Sodium and lithium superionic gels and glasses , 1985 .

[7]  P. Colomban,et al.  PROTON TRANSFER AND SUPERIONIC CONDUCTIVITY IN SOLIDS AND GELS , 1988 .

[8]  P. Colomban Raman study of the formation of transition alumina single crystal from protonic β/β″ aluminas , 1988 .

[9]  Tang,et al.  Multiple lattice phases and polaron-lattice-spinless-defect competition in polyaniline. , 1989, Physical review. B, Condensed matter.

[10]  U. Reinholz,et al.  Analyses of hydrogen in quartz and in sapphire using depth profiling by ERDA at atmospheric pressure: Comparison with resonant NRA and SIMS , 2006 .

[11]  H. Lutz,et al.  Weak hydrogen bonds in solid hydroxides and hydrates , 1994 .

[12]  J. Pallon,et al.  A new detector for hydrogen analysis with a nuclear microprobe , 1997 .

[13]  P. Colomban ReviewRaman Studies of Inorganic Gels and of Their Sol-to-Gel, Gel-to-Glass and Glass-to-Ceramics Transformation , 1996 .

[14]  P. Colomban,et al.  Densification mechanisms of alumina, aluminosilicates and aluminoborosilicates gels, glasses and ceramics , 1994 .

[15]  J. Tomkinson,et al.  Novel forms of hydrogen in solids: the `ionic' proton and the `quasi-free' proton , 1997 .

[16]  C. Loong,et al.  Proton-Containing Yttrium-Doped Barium Cerate: A Simultaneous Structural and Dynamic Study by Neutron Scattering , 2007 .

[17]  V. Auzelyte,et al.  Hydrogen depth profiling by p-p scattering in nominally anhydrous minerals , 2005 .

[18]  A. Slodczyk,et al.  The structural and dynamics neutron study of proton conductors: Difficulties and improvement procedures in protonated perovskite , 2012 .

[19]  H. Lutz,et al.  OH stretching frequencies of solid hydroxides and of free OH− ions , 1982 .

[20]  P. Colomban,et al.  Infrared and Raman study of polyaniline Part I. Hydrogen bonding and electronic mobility in emeraldine salts , 1994 .

[21]  R. Hempelmann Hydrogen diffusion mechanism in proton conducting oxides , 1996 .

[22]  R. Roy Gel Route to Homogeneous Glass Preparation , 1969 .

[23]  Christof Karmonik,et al.  Quasielastic thermal neutron scattering experiment on the proton conductor SrCe0.95Yb0.05H0.02O2.985 , 1996 .

[24]  S. Greenbaum,et al.  Nuclear magnetic resonance of polymer electrolyte membrane fuel cells. , 2010, Chemical record.

[25]  N. Baffier,et al.  Dielectric relaxation: A new technique to study protonic transfer in superionic conductors , 1988 .

[26]  P. Colomban,et al.  Keggin’s ion structural modification and expansion of dodecatungstophosphoric acid hexahydrate induced by temperature treatment: In situ X-ray powder diffraction and raman investigations , 2000 .

[27]  P. Colomban,et al.  Pressure—temperature-induced conductivity in polyaniline base and salts , 1996 .

[28]  G. Ferrand,et al.  Dating study of two rock crystal carvings by surface microtopography and by ion beam analyses of hydrogen , 2009 .

[29]  H. Bohn,et al.  Water vapor solubility and electrochemical characterization of the high temperature proton conductor BaZr0.9Y0.1O2.95 , 2000 .

[30]  Sumio Sakka,et al.  Glasses from metal alcoholates , 1980 .

[31]  J. Maier,et al.  Proton Conductivity: Compounds and their Structural and Chemical Peculiarities , 1992 .

[32]  N. Toulhoat,et al.  Nuclear reaction microanalysis and electron microanalysis of light elements in minerals and glasses , 1991 .

[33]  P. Colomban Vibrational study of hydrogen beta alumina , 1981 .

[34]  A. Sobolev,et al.  The H2O content of basalt glasses from Southwest Pacific back-arc basins , 1993 .

[35]  T. Komatsubara,et al.  Development of ERCS hydrogen analysis for melt inclusions in erupted magmatic samples , 2006 .

[36]  P. Colomban,et al.  Equilibrium of the protonic species in hydrates of some heteropolyacids at elevated temperatures , 1991 .

[37]  A. Slodczyk,et al.  Phase transitions in the H+-conducting perovskite ceramics by the quasi-elastic neutron and high-pressure Raman scattering , 2008 .

[38]  P. Colomban,et al.  How to tailor the porous structure of alumina and aluminosilicate gels and glasses , 1996 .

[39]  F. Grasset,et al.  Structural modifications induced by free protons in proton conducting perovskite zirconate membrane , 2012 .

[40]  A. Slodczyk,et al.  Indirect Raman identification of the proton insertion in the high-temperature [Ba/Sr][Zr/Ti]O3-modified perovskite protonic conductors , 2009 .

[41]  M. Taillades-Jacquin,et al.  Hydrogen diffusion in high temperature proton conducting ceramics , 2008 .

[42]  R. Baddour‐Hadjean,et al.  Inelastic neutron scattering study of proton dynamics in polyanilines , 1996 .

[43]  C. L. Fink,et al.  Nondestructive Analysis for Trace Amounts of Hydrogen , 1972 .

[44]  P. Colomban,et al.  Equilibrium between protonic species and conductivity mechanism in antimonic acid, H2Sb4O11·nH2O , 1989 .

[45]  F. Grasset,et al.  Substitution and proton doping effect on SrZrO3 behaviour: high-pressure Raman study , 2011 .

[46]  J. Boilot,et al.  FORMATION OF SUPERIONIC GELS AND GLASSES BY LOW TEMPERATURE CHEMICAL POLYMERIZATION , 1983 .

[47]  P. Colomban Structure of oxide gels and glasses by infrared and raman scattering , 1989 .

[48]  S. Nagata,et al.  Temperature dependence of the D–H replacement rates in D-implanted oxide ceramics exposed to H2O vapor , 2007 .

[49]  T. Norby Proton Conduction in Solids: Bulk and Interfaces , 2009 .

[50]  K. Kreuer,et al.  Proton conductivity in fused phosphoric acid; A 1H/31P PFG-NMR and QNS study , 1993 .

[51]  P. Colomban,et al.  NATURE OF THE PROTONIC SPECIES AND THE GEL- CRYSTAL TRANSITION IN HYDRATED ZIRCONIUM PHOSPHATE* , 1989 .

[52]  P. Colomban,et al.  Determination of the hydroxyl content in gels and porous “glasses” from alkoxide hydrolysis by combined TGA and BET analysis , 1996 .

[53]  A. Nowick,et al.  High-temperature protonic conductors with perovskite-related structures , 1995 .

[54]  P. Colomban,et al.  Phase Diagram, Short‐Range Structure, and Amorphous Phases in the ZrO2‐GeO2(‐H2O) System , 2004 .

[55]  P. Colomban Gel technology in ceramics, glass-ceramics and ceramic-ceramic composites☆ , 1989 .

[56]  F. Ernsberger The Nonconformist Ion , 1983 .

[57]  L. Yu,et al.  An inelastic neutron scattering study of the proton dynamics in γ-MnO2 , 1991 .

[58]  P. Colomban,et al.  Infrared study of H+(H2O)nβ″ alumina , 1979 .

[59]  K. S. Mazdiyasni Powder synthesis from metal-organic precursors , 1982 .

[60]  J. Schnell,et al.  Hydrogenated β-alumina-like thin films , 1983 .

[61]  Kang Li Ceramic Membranes for Separation and Reaction , 2007 .

[62]  J. Tomkinson,et al.  Inelastic neutron scattering study of protonic species during the thermal dehydration of 12-tungstophosphoric hexahydrate , 1994 .

[63]  H. Iwahara,et al.  Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production , 1981 .

[64]  M. Jozefowicz,et al.  Conductivité en courant continu des sulfates de polyanilines , 1971 .

[65]  P. Colomban,et al.  Study of Polyanilines by High-Resolution Electron Microscopy , 1999 .

[66]  H. Bleif,et al.  Two-dimensional proton diffusion in CsH3O2 , 1991 .

[67]  A. Dianoux,et al.  Neutron scattering study of the proton dynamics in NH+4 and OH+3 β alumina , 1980 .

[68]  H. Eckert,et al.  Water in Silicate Glasses: Quantitation and Structural Studies by ^(1)H Solid Echo and MAS-NMR Methods , 1988 .

[69]  P. Colomban,et al.  Vibrational study of short-range order and structure of polyaniline bases and salts , 1999 .

[70]  G. Rossman,et al.  Principles of quantitative absorbance measurements in anisotropic crystals , 1996 .

[71]  G. S. Snow Fabrication of Transparent Electrooptic PLZT Ceramics by Atmosphere Sintering , 1973 .

[72]  R. Stalder,et al.  Hydrogen diffusion in natural and synthetic orthopyroxene , 2003 .

[73]  I. Animitsa,et al.  Double perovskites with oxygen structural vacancies: Raman spectra, conductivity and water uptake , 2001 .

[74]  H. Lutz,et al.  Raman and infrared spectra of barium and strontium hydroxides and hydroxide hydrates , 1981 .

[75]  P. Colomban,et al.  Structural modifications of dodecatungstophosphoric acid hexahydrate induced by temperature in the 10–358 K range. In situ high-resolution neutron powder diffraction investigation , 2002 .

[76]  J. Boilot,et al.  X-Ray-Scattering Evidence for Sublattice Phase Transition in Stoichiometric Silver β-Alumina , 1979 .

[77]  P. Colomban,et al.  Frequency dependent conductivity and microwave relaxations in protonic conductors , 1993 .

[78]  P. Colomban Latest Developments in Proton Conductors , 1999 .

[79]  M. S. Paterson,et al.  The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials , 1982 .

[80]  R. Baddour‐Hadjean,et al.  Hydrogen in perovskites: Mechanism of solubility, chemical state, effect on electron subsystem, phase transformation , 1998 .

[81]  G. Dollinger,et al.  Water in natural olivine—determined by proton-proton scattering analysis , 2008 .

[82]  P. Colomban,et al.  Radiowave and microwave frequency dielectric relaxations at the superionic, incommensurate and ferroelectric phase transitions in NH4HSeO4 and ND4DSeO4 , 1992 .

[83]  A. Nakao,et al.  Characterization and electrochemical properties of P2O5–ZrO2–SiO2 glasses as proton conducting electrolyte , 2006 .

[84]  R. Baddour‐Hadjean,et al.  INELASTIC NEUTRON SCATTERING STUDIES OF POLYANILINES AND PARTIALLY DEUTERATED ANALOGUES , 1997 .

[85]  H. Lutz,et al.  Sr(OH)Br, a Metal Hydroxide Halide with Unusual Properties , 2000 .

[86]  P. Colomban Orientational disorder, glass/crystal transition and superionic conductivity in nasicon , 1986 .

[87]  P. Colomban Hydrogen bonding in hydrogen-substituted lithium aluminosilicates" , 1992 .

[88]  P. Colomban,et al.  RF-microwave dielectric relaxation and conductivity in Cs1−xMxHSO4 disordered protonic conductors , 1991 .

[89]  P. Ricciardi,et al.  Glass corrosion mechanisms: A multiscale analysis , 2008 .

[90]  P. Colomban,et al.  Thermally induced phase transformations of 12-tungstophosphoric acid 29-hydrate: synthesis and characterization of PW8O26-type bronzes , 1994, Journal of Materials Science.

[91]  A. Slodczyk,et al.  Proton dynamics and structural modifications in the protonic conductor perovskites (Proceedings of the 3rd International Conference on Physics of Solid State Ionics (ICPSSI-3)) , 2010 .

[92]  P. Colomban,et al.  Phase transitions and electrical properties of Cs1−x M x HSO4 “glassy crystals” and solid solutions , 1989 .

[93]  L. Klein,et al.  Sol-Gel Processing for Conventional and Alternative Energy , 2012 .

[94]  Arthur J. Epstein,et al.  X-ray structure of polyaniline , 1991 .

[95]  P. Colomban,et al.  Vibrational spectra and structure of H+(H2O)nβ‐ alumina , 1977 .

[96]  T. Holý,et al.  Spatial resolution of Medipix-2 device as neutron pixel detector , 2005 .

[97]  Deborah J. Jones,et al.  Chemical reactions at the liquid-solid interface in meso/microporous inorganic gels and glasses , 1996 .

[98]  L. Leshin,et al.  Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals , 2007 .

[99]  P. Vilarinho,et al.  High Resolution and Differential PIXE combined with RBS, EBS and AFM analysis of magnesium titanate (MgTiO3) multilayer structures , 2010 .

[100]  B. E. Yoldas Effect of Variations in Polymerized Oxides on Sintering and Crystalline Transformations , 1982 .

[101]  Y. Furukawa Reexamination of the assignments of electronic absorption bands of polarons and bipolarons in conducting polymers , 1995 .

[102]  P. Colomban,et al.  Ion exchange and hot corrosion of ceramic composites matrices: A vibrational and microstructural study , 1994 .

[103]  J. Boilot,et al.  New glasses from metal organic precursors: Preparation and properties , 1986 .

[104]  Philippe Colomban,et al.  Raman Spectroscopy of Nanomaterials: How Spectra Relate to Disorder, Particle Size and Mechanical Properties , 2007 .

[105]  G. Rossman,et al.  Analysis of hydrogen in olivine by SIMS: Evaluation of standards and protocol , 2011 .

[106]  J. Boilot,et al.  Ceramiques d'alumine et de ferrite pour sonde a protons , 1980 .

[107]  P. Colomban,et al.  Vibrational study of H3OUO2PO4·3 H2O (HUP) and related compounds. Phase transitions and conductivity mechanism: Part II, H3OUO2PO4·3 H2O , 1985 .

[108]  S. Nagata,et al.  ERD measurement of D–H replacement in D-implanted oxide ceramics exposed to H2O vapor at room temperature , 2006 .

[109]  P. Colomban,et al.  Pore size and liquid impregnation of microporous aluminosilicate gels and glasses , 1996 .

[110]  P. Colomban,et al.  Structure and proton conductivity of 12-tungstophosphoric acid doped silica , 1997 .