Algorithms and lower bounds for de morgan formulas of low-communication leaf gates

The class FORMULA[s] ο G consists of Boolean functions computable by size-s de Morgan formulas whose leaves are any Boolean functions from a class G. We give lower bounds and (SAT, Learning, and PRG) algorithms for FORMULA[n1.99] ο G, for classes G of functions with low communication complexity. Let R(k) (G) be the maximum k-party number-on-forehead randomized communication complexity of a function in G. Among other results, we show that: • The Generalized Inner Product function GIPkn cannot be computed in FORMULA[s] ο G on more than 1/2 + ε fraction of inputs for [MATH HERE] This significantly extends the lower bounds against bipartite formulas obtained by [61]. As a corollary, we get an average-case lower bound for GIPkn against FORMULA[n1.99] ο PTFk-1, i.e., sub-quadratic-size de Morgan formulas with degree-(k - 1) PTF (polynomial threshold function) gates at the bottom. • There is a PRG of seed length [MATH HERE] that ε-fools FORMULA[s] ο G. For the special case of FORMULA[s] οLTF, i.e., size-s formulas with LTF (linear threshold function) gates at the bottom, we get the better seed length [MATH HERE]. In particular, this provides the first non-trivial PRG (with seed length o(n)) for intersections of n half-spaces in the regime where ε ≤ 1/n, complementing a recent result of [44]. • There exists a randomized 2n-t-time #SAT algorithm for FORMULA[s] ο G, where [MATH HERE] In particular, this implies a nontrivial #SAT algorithm for FORMULA[n1.99] ο LTF. • The Minimum Circuit Size Problem is not in FORMULA[n1.99] ο XOR; thereby making progress on hardness magnification, in connection with results from [45, 12]. On the algorithmic side, we show that the concept class FORMULA[n1.99] ο XOR can be PAC-learned in time 2o(n/log n).

[1]  Noam Nisan,et al.  Multiparty Protocols, Pseudorandom Generators for Logspace, and Time-Space Trade-Offs , 1992, J. Comput. Syst. Sci..

[2]  Noam Nisan,et al.  The Effect of Random Restrictions on Formula Size , 1993, Random Struct. Algorithms.

[3]  Ruosong Wang,et al.  Classical Algorithms from Quantum and Arthur-Merlin Communication Protocols , 2019, ITCS.

[4]  Ben Reichardt Faster quantum algorithm for evaluating game trees , 2011, SODA '11.

[5]  Andris Ambainis,et al.  Any AND-OR Formula of Size N Can Be Evaluated in Time N1/2+o(1) on a Quantum Computer , 2010, SIAM J. Comput..

[6]  P. Gopalan,et al.  Fooling Functions of Halfspaces under Product Distributions , 2010, 2010 IEEE 25th Annual Conference on Computational Complexity.

[7]  Uri Zwick,et al.  Shrinkage of de Morgan formulae under restriction , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[8]  Edward Farhi,et al.  A Quantum Algorithm for the Hamiltonian NAND Tree , 2008, Theory Comput..

[9]  Umesh V. Vazirani,et al.  An Introduction to Computational Learning Theory , 1994 .

[10]  Valentine Kabanets,et al.  2 Better Tradeoffs 2 . 1 Hardness amplification via error-correcting codes , 2007 .

[11]  Mihai Patrascu,et al.  On the possibility of faster SAT algorithms , 2010, SODA '10.

[12]  Lijie Chen,et al.  Hardness Magnification for all Sparse NP Languages , 2019, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[13]  Avishay Tal The Bipartite Formula Complexity of Inner-Product is Quadratic , 2016, Electron. Colloquium Comput. Complex..

[14]  N. Nisan The communication complexity of threshold gates , 1993 .

[15]  Johan Håstad The Shrinkage Exponent of de Morgan Formulas is 2 , 1998, SIAM J. Comput..

[16]  Emanuele Viola,et al.  The communication complexity of addition , 2013, Comb..

[17]  Stasys Jukna,et al.  Boolean Function Complexity Advances and Frontiers , 2012, Bull. EATCS.

[18]  Noga Alon,et al.  Simple Construction of Almost k-wise Independent Random Variables , 1992, Random Struct. Algorithms.

[19]  Noam Nisan,et al.  Pseudorandomness for network algorithms , 1994, STOC '94.

[20]  Rocco A. Servedio,et al.  Fooling polytopes , 2018, Electron. Colloquium Comput. Complex..

[21]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[22]  Igor S. Sergeev Upper bounds for the size and the depth of formulae for MOD-functions , 2017 .

[23]  Russell Impagliazzo,et al.  Pseudorandomness from Shrinkage , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[24]  Ben Reichardt,et al.  Span Programs and Quantum Query Complexity: The General Adversary Bound Is Nearly Tight for Every Boolean Function , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[25]  Emanuele Viola,et al.  On beating the hybrid argument , 2012, ITCS '12.

[26]  Ben Reichardt,et al.  Reflections for quantum query algorithms , 2010, SODA '11.

[27]  Ryan Williams Nonuniform ACC Circuit Lower Bounds , 2014, JACM.

[28]  S. Muroga,et al.  Theory of majority decision elements , 1961 .

[29]  Ben Reichardt,et al.  Span-program-based quantum algorithm for evaluating formulas , 2007, Theory Comput..

[30]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 2001, JACM.

[31]  Rocco A. Servedio,et al.  What Circuit Classes Can Be Learned with Non-Trivial Savings? , 2017, ITCS.

[32]  Michael E. Saks,et al.  Discrepancy sets and pseudorandom generators for combinatorial rectangles , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[33]  Prahladh Harsha,et al.  On polynomial approximations to AC , 2019, Random Struct. Algorithms.

[34]  Daniel M. Kane,et al.  A polynomial restriction lemma with applications , 2017, STOC.

[35]  Toniann Pitassi,et al.  The Landscape of Communication Complexity Classes , 2018, computational complexity.

[36]  Rocco A. Servedio,et al.  Improved pseudorandom generators from pseudorandom multi-switching lemmas , 2019, APPROX-RANDOM.

[37]  Karl Bringmann,et al.  Tighter Connections Between Formula-SAT and Shaving Logs , 2018, ArXiv.

[38]  Andrew Chi-Chih Yao,et al.  Theory and application of trapdoor functions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[39]  David Zuckerman,et al.  Mining Circuit Lower Bound Proofs for Meta-Algorithms , 2014, computational complexity.

[40]  Mahdi Cheraghchi,et al.  Circuit Lower Bounds for MCSP from Local Pseudorandom Generators , 2020, Electron. Colloquium Comput. Complex..

[41]  Avishay Tal,et al.  Formula lower bounds via the quantum method , 2017, STOC.

[42]  Avishay Tal,et al.  Shrinkage of De Morgan Formulae by Spectral Techniques , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[43]  Yuval Ishai,et al.  Exploring Crypto Dark Matter: - New Simple PRF Candidates and Their Applications , 2018, TCC.

[44]  Troy Lee,et al.  Negative weights make adversaries stronger , 2007, STOC '07.

[45]  Evgeny Dantsin,et al.  Worst-Case Upper Bounds , 2009, Handbook of Satisfiability.

[46]  Timothy M. Chan,et al.  Polynomial Representations of Threshold Functions and Algorithmic Applications , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[47]  Ronald de Wolf,et al.  Robust Polynomials and Quantum Algorithms , 2003, Theory of Computing Systems.

[48]  V. M. Khrapchenko Method of determining lower bounds for the complexity of P-schemes , 1971 .

[49]  Or Meir,et al.  Toward the KRW Composition Conjecture: Cubic Formula Lower Bounds via Communication Complexity , 2016, Electron. Colloquium Comput. Complex..

[50]  Noga Alon,et al.  Simple construction of almost k-wise independent random variables , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[51]  Valentine Kabanets,et al.  Satisfiability and Derandomization for Small Polynomial Threshold Circuits , 2018, Electron. Colloquium Comput. Complex..

[52]  Igor Carboni Oliveira,et al.  Conspiracies between Learning Algorithms, Circuit Lower Bounds and Pseudorandomness , 2016, CCC.

[53]  Johan Hå stad The Shrinkage Exponent of de Morgan Formulas is 2 , 1998 .

[54]  A. Razborov Communication Complexity , 2011 .

[55]  Avishay Tal #SAT Algorithms from Shrinkage , 2015, Electron. Colloquium Comput. Complex..

[56]  Troy Lee,et al.  THE QUANTUM ADVERSARY METHOD AND CLASSICAL FORMULA SIZE LOWER BOUNDS , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[57]  Igor Carboni Oliveira,et al.  Hardness magnification near state-of-the-art lower bounds , 2019, Electron. Colloquium Comput. Complex..

[58]  Yoav Freund,et al.  Boosting a weak learning algorithm by majority , 1995, COLT '90.

[59]  Adam Tauman Kalai,et al.  On agnostic boosting and parity learning , 2008, STOC.

[60]  Rocco A. Servedio,et al.  Agnostically learning halfspaces , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[61]  D. Coppersmiths RAPID MULTIPLICATION OF RECTANGULAR MATRICES * , 2014 .

[62]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.