Mechanical properties of zirconia ceramics biomimetically coated with calcium deficient hydroxyapatite.

[1]  E. Pallone,et al.  Plasma surface treatments of Al2O3/ZrO2 nanocomposites and their influence on the formation and adhesion of calcium phosphates , 2018, Applied Surface Science.

[2]  A. Lobo,et al.  Surface modification using the biomimetic method in alumina-zirconia porous ceramics obtained by the replica method. , 2018, Journal of biomedical materials research. Part B, Applied biomaterials.

[3]  W. Harun,et al.  A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials , 2018 .

[4]  E. Pallone,et al.  Formation of different calcium phosphate phases on the surface of porous Al2O3-ZrO2 nanocomposites , 2018 .

[5]  J. Macan,et al.  Influence of preparation method and alumina content on crystallization and morphology of porous yttria stabilized zirconia , 2017 .

[6]  S. Dorozhkin Calcium Orthophosphate-Based Bioceramics and Biocomposites: Dorozhkin/Calcium Orthophosphate-Based Bioceramics and Biocomposites , 2016 .

[7]  Jinshan Li,et al.  Compressive mechanical compatibility of anisotropic porous Ti6Al4V alloys in the range of physiological strain rate for cortical bone implant applications , 2015, Journal of Materials Science: Materials in Medicine.

[8]  C. Hall,et al.  Porosity–density relations in stone and brick materials , 2015 .

[9]  K. Paraskevopoulos,et al.  Effect of in vitro aging on the flexural strength and probability to fracture of Y-TZP zirconia ceramics for all-ceramic restorations. , 2014, Dental materials : official publication of the Academy of Dental Materials.

[10]  H. Hara,et al.  Bone responses to zirconia implants with a thin carbonate-containing hydroxyapatite coating using a molecular precursor method. , 2014, Journal of biomedical materials research. Part B, Applied biomaterials.

[11]  S. Pilli,et al.  Insights into the effects of tensile and compressive loadings on human femur bone , 2014, Advanced biomedical research.

[12]  G. Liu,et al.  Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications , 2014 .

[13]  S. Ekwaro-Osire,et al.  Weibull Analysis of Fracture Test Data on Bovine Cortical Bone: Influence of Orientation , 2013, International journal of biomaterials.

[14]  T. Kosmač,et al.  Novel method for the synthesis of a β-tricalcium phosphate coating on a zirconia implant , 2013 .

[15]  L. Treccani,et al.  Functionalized ceramics for biomedical, biotechnological and environmental applications. , 2013, Acta biomaterialia.

[16]  L. Pawłowski,et al.  Modeling of elastic modulus and hardness determination by indentation of porous yttria stabilized zirconia coatings , 2013 .

[17]  A. Khan,et al.  Raman Spectroscopy of Natural Bone and Synthetic Apatites , 2013 .

[18]  R. Othman,et al.  Macroporous bioceramics: A remarkable material for bone regeneration , 2012, Journal of biomaterials applications.

[19]  M. Mazzocchi,et al.  Chemical treatment on alumina–zirconia composites inducing apatite formation with maintained mechanical properties , 2012 .

[20]  Shu Zhu,et al.  The effect of adhesive strength of hydroxyapatite coating on the stability of hydroxyapatite-coated prostheses in vivo at the early stage of implantation , 2012, Archives of medical science : AMS.

[21]  E. Adolfsson,et al.  Enhancing the bioactivity of zirconia and zirconia composites by surface modification. , 2012, Journal of biomedical materials research. Part B, Applied biomaterials.

[22]  T. Kosmač,et al.  Rapid biomimetic deposition of octacalcium phosphate coatings on zirconia ceramics (Y-TZP) for dental implant applications , 2012 .

[23]  Sergey V Dorozhkin Amorphous calcium (ortho)phosphates. , 2010, Acta biomaterialia.

[24]  C. Zamani,et al.  Phase transformation studies on YSZ doped with alumina. Part 2: Yttria segregation , 2010 .

[25]  Yuqi Feng,et al.  Biomimetic fabrication of hydroxyapatite-coated zirconia-magnesia composite and its application in the separation of proteins. , 2009, Talanta.

[26]  J. Tirillò,et al.  Mechanical properties of cellular ceramics obtained by gel casting: Characterization and modeling , 2009 .

[27]  E. Wachtel,et al.  Biomimetic organic-inorganic nanocomposite coatings for titanium implants. , 2009, Journal of biomedical materials research. Part A.

[28]  J. Macan,et al.  Porous zirconium titanate ceramics synthesized by sol-gel process , 2009 .

[29]  P. Xiao,et al.  Fabrication of yttria-stabilized-zirconia thick coatings via slurry process with pressure infiltration , 2009 .

[30]  D. Su,et al.  Influence of mechanochemical processing to luminescence properties in Y2O3 powder , 2008 .

[31]  Byong-Taek Lee,et al.  Microstructure and mechanical properties of porous yttria stabilized zirconia ceramic using poly methyl methacrylate powder , 2006 .

[32]  J. Chevalier,et al.  What future for zirconia as a biomaterial? , 2006, Biomaterials.

[33]  Steve Bull,et al.  An overview of the potential of quantitative coating adhesion measurement by scratch testing , 2006 .

[34]  Takashi Nakamura,et al.  Bonelike Apatite Formation Induced on Zirconia Gel in a Simulated Body Fluid and Its Modified Solutions , 2004 .

[35]  Robert Danzer,et al.  The ball on three balls test for strength testing of brittle discs: Part II: analysis of possible errors in the strength determination , 2004 .

[36]  George Georgiou,et al.  Calcium phosphates and glass composite coatings on zirconia for enhanced biocompatibility. , 2004, Biomaterials.

[37]  G. Daculsi,et al.  Calcium-deficient apatite: a first in vivo study concerning bone ingrowth. , 2003, Journal of biomedical materials research. Part A.

[38]  S. Koutsopoulos,et al.  Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. , 2002, Journal of biomedical materials research.

[39]  Robert Danzer,et al.  The ball on three balls test for strength testing of brittle discs: stress distribution in the disc , 2002 .

[40]  Takashi Nakamura,et al.  Apatite-forming ability of a zirconia/alumina nano-composite induced by chemical treatment. , 2002, Journal of biomedical materials research.

[41]  L. Winnubst,et al.  Characterization of Grain Boundaries in Superplastically Deformed Y-TZP Ceramics , 1994 .

[42]  R. Telle,et al.  Biomimetic in situ nucleation of calcium phosphates by protein immobilization on high strength ceramic materials , 2018 .

[43]  Jingzhou Yang,et al.  Novel Layered Hydroxyapatite/Tri‐Calcium Phosphate–Zirconia Scaffold Composite with High Bending Strength for Load‐Bearing Bone Implant Application , 2014 .

[44]  Besim Ben-Nissan,et al.  Advances in Calcium Phosphate Biomaterials , 2014 .

[45]  C. Kontoyannis,et al.  Characterization of calcium phosphates mixtures , 2013 .

[46]  S. Liou,et al.  Structural characterization of nano-sized calcium deficient apatite powders. , 2004, Biomaterials.

[47]  Takashi Nakamura,et al.  Apatite formation on zirconium metal treated with aqueous NaOH. , 2002, Biomaterials.

[48]  G. Daculsi,et al.  Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. , 1998, Biomaterials.

[49]  S. Goldstein The mechanical properties of trabecular bone: dependence on anatomic location and function. , 1987, Journal of biomechanics.

[50]  C. H. Perry,et al.  Structural disorder and phase transitions in ZrO2-Y2O3 system , 1981 .