인공신경망 모델을 이용한 냉동기 및 공조기 최적 기동/정지 제어

BEMS(Building Energy Management Systems) have been applied to office buildings and collect relevant building energy data, e.g. temperatures, mass flow rates and energy consumptions of building mechanical systems and indoor spaces. The aforementioned measured data can be beneficially utilized for developing data-driven machine learning models which can be then used as part of MPC(Model Predictive Control) and/or optimal control strategies. In this study, the authors developed ANN(Artificial Neural Network) models of an AHU (Air Handling Unit) and a chiller for a real-life office building using BEMS data. Based on the ANN models, the authors developed optimal control strategies, e.g. daily operation schedule with regard to optimal start and stop of the AHU and the chiller (500 RT). It was found that due to the optimal start and stop of the AHU and the chiller, 4.5% and 16.4% of operation hours of the AHU and the chiller could be saved, compared to an existing operation.