Distinct algorithms for combining landmarks and path integration in medial entorhinal, visual and retrosplenial cortex

During navigation, animals estimate their position using path integration and landmarks, engaging many brain areas. Whether these areas follow specialized or universal cue integration principles remains unknown. Here, we combined electrophysiology with virtual reality to quantify cue integration across thousands of neurons in three areas that support navigation: primary visual (V1), retrosplenial (RSC) and medial entorhinal cortex (MEC). Path integration influenced position estimates in MEC more than in V1 and RSC. V1 coded position retrospectively, likely reflecting delays in sensory processing, whereas MEC coded position prospectively, and RSC was intermediate between the two. In combining path integration with landmarks, MEC showed signatures of Kalman filtering, and we report a distance-tuned neural population that could implement such filtering through attractor dynamics. Our results show that during navigation, MEC serves as a specialized cortical hub for reconciling path integration and landmarks to estimate position and suggest an algorithm for calculating these estimates.

[1]  Edvard I. Moser,et al.  Speed cells in the medial entorhinal cortex , 2015, Nature.

[2]  Javier Masís,et al.  Encoding of 3D Head Orienting Movements in the Primary Visual Cortex , 2020, Neuron.

[3]  Lukas F Fischer,et al.  Representation of visual landmarks in retrosplenial cortex , 2019, bioRxiv.

[4]  D. Tank,et al.  Membrane potential dynamics of grid cells , 2013, Nature.

[5]  Lukas F Fischer,et al.  Author response: Representation of visual landmarks in retrosplenial cortex , 2020 .

[6]  A. Alexander,et al.  Spatially Periodic Activation Patterns of Retrosplenial Cortex Encode Route Sub-spaces and Distance Traveled , 2017, Current Biology.

[7]  S. Mizumori,et al.  Retrosplenial cortex inactivation selectively impairs navigation in darkness. , 1999, Neuroreport.

[8]  May-Britt Moser,et al.  The entorhinal grid map is discretized , 2012, Nature.

[9]  Leif H. Finkel,et al.  A Neural Implementation of the Kalman Filter , 2009, NIPS.

[10]  M. Quirk,et al.  Experience-Dependent Asymmetric Shape of Hippocampal Receptive Fields , 2000, Neuron.

[11]  Matteo Carandini,et al.  Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels , 2016, bioRxiv.

[12]  Menno Witter,et al.  The Retrosplenial Cortex: Intrinsic Connectivity and Connections with the (Para)Hippocampal Region in the Rat. An Interactive Connectome , 2011, Front. Neuroinform..

[13]  Alexandre Pouget,et al.  Optimal Sensorimotor Integration in Recurrent Cortical Networks: A Neural Implementation of Kalman Filters , 2007, The Journal of Neuroscience.

[14]  M. Carandini,et al.  Mouse Visual Cortex Is Modulated by Distance Traveled and by Theta Oscillations , 2020, Current Biology.

[15]  William E. Allen,et al.  Thirst regulates motivated behavior through modulation of brainwide neural population dynamics , 2019, Science.

[16]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[17]  Surya Ganguli,et al.  Emergent elasticity in the neural code for space , 2018, Proceedings of the National Academy of Sciences.

[18]  Georg B. Keller,et al.  Sensorimotor Mismatch Signals in Primary Visual Cortex of the Behaving Mouse , 2012, Neuron.

[19]  Steffen B. E. Wolff,et al.  Encoding of 3D Head Orienting Movements in Primary Visual Cortex , 2020, bioRxiv.

[20]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[21]  Carlos D. Brody,et al.  Task-Dependent Changes in the Large-Scale Dynamics and Necessity of Cortical Regions , 2019, Neuron.

[22]  Matteo Carandini,et al.  A tool for analyzing electrode tracks from slice histology , 2018, bioRxiv.

[23]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[24]  C. Barry,et al.  Specific evidence of low-dimensional continuous attractor dynamics in grid cells , 2013, Nature Neuroscience.

[25]  Douglas A Nitz,et al.  Retrosplenial cortex maps the conjunction of internal and external spaces , 2015, Nature Neuroscience.

[26]  Edvard I. Moser,et al.  Object-vector coding in the medial entorhinal cortex , 2018 .

[27]  Bruce L. McNaughton,et al.  Sparse orthogonal population representation of spatial context in the retrosplenial cortex , 2017, Nature Communications.

[28]  M. Carandini,et al.  Integration of visual motion and locomotion in mouse visual cortex , 2013, Nature Neuroscience.

[29]  Yi Gu,et al.  Visual cue-related activity of cells in the medial entorhinal cortex during navigation in virtual reality , 2018, bioRxiv.

[30]  C. Harvey,et al.  The Spatial Structure of Neural Encoding in Mouse Posterior Cortex during Navigation , 2019, Neuron.

[31]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[32]  Surya Ganguli,et al.  Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation , 2018, Nature Neuroscience.

[33]  Ehren L. Newman,et al.  Medial entorhinal cortex activates in a traveling wave in the rat , 2020, eLife.

[34]  Matthew T. Kaufman,et al.  Single-trial neural dynamics are dominated by richly varied movements , 2019, Nature Neuroscience.

[35]  M. Botvinick,et al.  The hippocampus as a predictive map , 2016 .

[36]  Torkel Hafting,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006, Science.

[37]  Sergey L. Gratiy,et al.  Fully integrated silicon probes for high-density recording of neural activity , 2017, Nature.

[38]  Kenneth D. Harris,et al.  Coherent encoding of subjective spatial position in visual cortex and hippocampus , 2018, Nature.

[39]  M. Moser,et al.  Representation of Geometric Borders in the Entorhinal Cortex , 2008, Science.

[40]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[41]  Nicholas A. Steinmetz,et al.  Spontaneous behaviors drive multidimensional, brainwide activity , 2019, Science.

[42]  B. Vogt,et al.  Direct connections of rat visual cortex with sensory, motor, and association cortices , 1984, The Journal of comparative neurology.

[43]  K. B. Clancy,et al.  Locomotion-dependent remapping of distributed cortical networks , 2018, Nature Neuroscience.

[44]  Surya Ganguli,et al.  A Multiplexed, Heterogeneous, and Adaptive Code for Navigation in Medial Entorhinal Cortex , 2017, Neuron.

[45]  Hassana K. Oyibo,et al.  Experience-dependent spatial expectations in mouse visual cortex , 2016, Nature Neuroscience.

[46]  Etienne Save,et al.  The retrosplenial cortex is necessary for path integration in the dark , 2014, Behavioural Brain Research.

[47]  Øyvind Arne Høydal,et al.  Object-vector coding in the medial entorhinal cortex , 2019, Nature.

[48]  Jill K. Leutgeb,et al.  Grid and Nongrid Cells in Medial Entorhinal Cortex Represent Spatial Location and Environmental Features with Complementary Coding Schemes , 2017, Neuron.