Thermodynamically-Efficient Local Computation: Classical and quantum information reservoirs and generators

The thermodynamics of modularity identifies how locally-implemented computation entails costs beyond those required by Landauer's bound on thermal computing. We prove a general theorem for efficient local computation, giving the necessary and sufficient conditions for a local operation to have zero modularity cost. Applied to thermodynamically-generating stochastic processes it confirms a conjecture that classical generators are efficient if and only if they satisfy retrodiction, which places minimal memory requirements on the generator. We extend this to quantum computation: any quantum generator that employs quantum memory compression cannot be thermodynamically efficient.

[1]  Young,et al.  Inferring statistical complexity. , 1989, Physical review letters.

[2]  Victor V. Albert Asymptotics of quantum channels: conserved quantities, an adiabatic limit, and matrix product states , 2018, Quantum.

[3]  James P. Crutchfield,et al.  Leveraging Environmental Correlations: The Thermodynamics of Requisite Variety , 2016, ArXiv.

[4]  James P. Crutchfield,et al.  Correlation-powered Information Engines and the Thermodynamics of Self-Correction , 2016, Physical review. E.

[5]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[6]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[7]  Mark M. Wilde,et al.  Recoverability in quantum information theory , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  B. Baumgartner,et al.  The structures of state space concerning Quantum Dynamical Semigroups , 2011, 1101.3914.

[9]  James P. Crutchfield,et al.  A Closed-Form Shave from Occam's Quantum Razor: Exact Results for Quantum Compression , 2015, ArXiv.

[10]  Denes Petz,et al.  Structure of Sufficient Quantum Coarse-Grainings , 2004 .

[11]  T. J. Elliott,et al.  Optimal stochastic modeling with unitary quantum dynamics , 2018, Physical Review A.

[12]  James P. Crutchfield,et al.  Above and Beyond the Landauer Bound: Thermodynamics of Modularity , 2017, Physical Review X.

[13]  Aaron D. Wyner,et al.  The common information of two dependent random variables , 1975, IEEE Trans. Inf. Theory.

[14]  D. Petz Sufficient subalgebras and the relative entropy of states of a von Neumann algebra , 1986 .

[15]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[16]  M. S. Leifer,et al.  A Bayesian approach to compatibility, improvement, and pooling of quantum states , 2011, 1110.1085.

[17]  James P. Crutchfield,et al.  Strong and Weak Optimizations in Classical and Quantum Models of Stochastic Processes , 2018, Journal of Statistical Physics.

[18]  Yuan Feng,et al.  The Structure of Decoherence-free Subsystems , 2018 .

[19]  Christopher Jarzynski,et al.  Work and information processing in a solvable model of Maxwell’s demon , 2012, Proceedings of the National Academy of Sciences.

[20]  James P. Crutchfield,et al.  Occam’s Quantum Strop: Synchronizing and Compressing Classical Cryptic Processes via a Quantum Channel , 2015, Scientific Reports.

[21]  James P. Crutchfield,et al.  Exact Synchronization for Finite-State Sources , 2010, ArXiv.

[22]  Daniel Ray Upper,et al.  Theory and algorithms for hidden Markov models and generalized hidden Markov models , 1998 .

[23]  James P. Crutchfield,et al.  Causal Asymmetry in a Quantum World , 2017, Physical Review X.

[24]  D. Petz Quantum Information Theory and Quantum Statistics , 2007 .

[25]  John A. Gunnels,et al.  Leveraging Secondary Storage to Simulate Deep 54-qubit Sycamore Circuits , 2019, 1910.09534.

[26]  U. Maurer,et al.  Secret key agreement by public discussion from common information , 1993, IEEE Trans. Inf. Theory.

[27]  Raffaella Carbone,et al.  Irreducible decompositions and stationary states of quantum channels , 2015, 1507.08404.

[28]  J. Crutchfield,et al.  Extreme Quantum Advantage when Simulating Classical Systems with Long-Range Interaction , 2017, Scientific Reports.

[29]  M. Ruskai Inequalities for quantum entropy: A review with conditions for equality , 2002, quant-ph/0205064.

[30]  James Odell,et al.  Between order and chaos , 2011, Nature Physics.

[31]  R. Renner,et al.  Inadequacy of von Neumann entropy for characterizing extractable work , 2011 .

[32]  M. Gu,et al.  Practical Unitary Simulator for Non-Markovian Complex Processes. , 2017, Physical review letters.

[33]  James P. Crutchfield,et al.  Asymptotic Synchronization for Finite-State Sources , 2010, ArXiv.

[34]  Robert W. Spekkens,et al.  A mathematical theory of resources , 2014, Inf. Comput..

[35]  J. Crutchfield,et al.  Extreme Quantum Memory Advantage for Rare-Event Sampling , 2017 .

[36]  A. Winter,et al.  Communications in Mathematical Physics Structure of States Which Satisfy Strong Subadditivity of Quantum Entropy with Equality , 2022 .

[37]  L. Goddard Information Theory , 1962, Nature.

[38]  A. B. Boyd,et al.  Identifying functional thermodynamics in autonomous Maxwellian ratchets , 2015, 1507.01537.

[39]  Karoline Wiesner,et al.  Quantum mechanics can reduce the complexity of classical models , 2011, Nature Communications.

[40]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[41]  Quantum Sufficiency in the Operator Algebra Framework , 2014 .

[42]  D. Petz SUFFICIENCY OF CHANNELS OVER VON NEUMANN ALGEBRAS , 1988 .

[43]  Lloyd,et al.  Use of mutual information to decrease entropy: Implications for the second law of thermodynamics. , 1989, Physical review. A, General physics.

[44]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .