Convolutional Compressed Sensing Using Deterministic Sequences

In this paper, a new class of orthogonal circulant matrices built from deterministic sequences is proposed for convolution-based compressed sensing (CS). In contrast to random convolution, the coefficients of the underlying filter are given by the discrete Fourier transform of a deterministic sequence with good autocorrelation. Both uniform recovery and non-uniform recovery of sparse signals are investigated, based on the coherence parameter of the proposed sensing matrices. Many examples of the sequences are investigated, particularly the Frank-Zadoff-Chu (FZC) sequence, the m-sequence and the Golay sequence. A salient feature of the proposed sensing matrices is that they can not only handle sparse signals in the time domain, but also those in the frequency and/or or discrete-cosine transform (DCT) domain.

[1]  R. Baraniuk,et al.  Compressive Radar Imaging , 2007, 2007 IEEE Radar Conference.

[2]  Trac D. Tran,et al.  Fast compressive imaging using scrambled block Hadamard ensemble , 2008, 2008 16th European Signal Processing Conference.

[3]  R. Calderbank,et al.  Chirp sensing codes: Deterministic compressed sensing measurements for fast recovery , 2009 .

[4]  Tom Høholdt,et al.  The merit factor of binary sequences related to difference sets , 1991, IEEE Trans. Inf. Theory.

[5]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity , 2008, ArXiv.

[6]  Holger Rauhut,et al.  Compressive Sensing with structured random matrices , 2012 .

[7]  Justin K. Romberg,et al.  Compressive Sensing by Random Convolution , 2009, SIAM J. Imaging Sci..

[8]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[9]  Rebecca Willett,et al.  Compressive coded aperture imaging , 2009, Electronic Imaging.

[10]  Shengli Zhou,et al.  Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing , 2009, OCEANS 2009-EUROPE.

[11]  LiChih-Peng,et al.  A Constructive Representation for the Fourier Dual of the Zadoff–Chu Sequences , 2007 .

[12]  Jean-Luc Starck,et al.  Compressed Sensing in Astronomy , 2008, IEEE Journal of Selected Topics in Signal Processing.

[13]  Yonina C. Eldar,et al.  Structured Compressed Sensing: From Theory to Applications , 2011, IEEE Transactions on Signal Processing.

[14]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[15]  Zhu Han,et al.  Compressive Sensing Based High-Resolution Channel Estimation for OFDM System , 2012, IEEE Journal of Selected Topics in Signal Processing.

[16]  David C. Chu,et al.  Polyphase codes with good periodic correlation properties (Corresp.) , 1972, IEEE Trans. Inf. Theory.

[17]  Hans D. Schotten,et al.  Binary and quadriphase sequences with optimal autocorrelation properties: a survey , 2003, IEEE Trans. Inf. Theory.

[18]  Abraham Lempel,et al.  On Fast M-Sequence Transforms , 1998 .

[19]  Emmanuel J. Candès,et al.  A Probabilistic and RIPless Theory of Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[20]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[21]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[22]  Yannick Boursier,et al.  Spread spectrum for imaging techniques in radio interferometry , 2009, ArXiv.

[23]  Branislav M. Popovic,et al.  Synthesis of power efficient multitone signals with flat amplitude spectrum , 1991, IEEE Trans. Commun..

[24]  D. H. Lehmer Incomplete Gauss sums , 1976 .

[25]  A. Finger,et al.  Pseudo Random Signal Processing: Theory and Application , 2005 .

[26]  Holger Rauhut,et al.  Suprema of Chaos Processes and the Restricted Isometry Property , 2012, ArXiv.

[27]  H. Rauhut Compressive Sensing and Structured Random Matrices , 2009 .

[28]  Satoshi Ito,et al.  Improvement of spatial resolution in magnetic resonance imaging using quadratic phase modulation , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[29]  Massimo Fornasier,et al.  Compressive Sensing and Structured Random Matrices , 2010 .

[30]  Marcel J. E. Golay,et al.  Complementary series , 1961, IRE Trans. Inf. Theory.

[31]  Robert L. Frank,et al.  Polyphase codes with good nonperiodic correlation properties , 1963, IEEE Trans. Inf. Theory.

[32]  Andrzej Milewski,et al.  Periodic Sequences with Optimal Properties for Channel Estimation and Fast Start-Up Equalization , 1983, IBM J. Res. Dev..

[33]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[34]  Jens P. Elsner,et al.  Compressed Spectrum Estimation for Cognitive Radios , 2009 .

[35]  Cong Ling,et al.  Statistical restricted isometry property of orthogonal symmetric Toeplitz matrices , 2009, 2009 IEEE Information Theory Workshop.

[36]  Richard G. Baraniuk,et al.  Random Filters for Compressive Sampling and Reconstruction , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[37]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[38]  Justin K. Romberg,et al.  Restricted Isometries for Partial Random Circulant Matrices , 2010, ArXiv.

[39]  Dilip V. Sarwate,et al.  Bounds on crosscorrelation and autocorrelation of sequences (Corresp.) , 1979, IEEE Transactions on Information Theory.

[40]  Guang Gong,et al.  Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar , 2005 .

[41]  Cong Ling,et al.  Deterministic compressed-sensing matrices: Where Toeplitz meets Golay , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[42]  Babak Hassibi,et al.  On multicarrier signals where the PMEPR of a random codeword is asymptotically logn , 2004, IEEE Transactions on Information Theory.

[43]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[44]  Robert D. Nowak,et al.  Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation , 2010, IEEE Transactions on Information Theory.

[45]  Sinem Coleri Ergen,et al.  Channel estimation techniques based on pilot arrangement in OFDM systems , 2002, IEEE Trans. Broadcast..

[46]  Trac D. Tran,et al.  Fast and Efficient Compressive Sensing Using Structurally Random Matrices , 2011, IEEE Transactions on Signal Processing.

[47]  James A. Davis,et al.  Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[48]  Pingzhi Fan,et al.  The Synthesis of Perfect Sequences , 1995, IMACC.

[49]  Junfeng Yang,et al.  Practical compressive sensing with Toeplitz and circulant matrices , 2010, Visual Communications and Image Processing.

[50]  A. Robert Calderbank,et al.  Construction of a Large Class of Deterministic Sensing Matrices That Satisfy a Statistical Isometry Property , 2009, IEEE Journal of Selected Topics in Signal Processing.

[51]  Chih-Peng Li,et al.  A Constructive Representation for the Fourier Dual of the Zadoff–Chu Sequences , 2007, IEEE Transactions on Information Theory.

[52]  W. Mow A new unified construction of perfect root-of-unity sequences , 1996, Proceedings of ISSSTA'95 International Symposium on Spread Spectrum Techniques and Applications.

[53]  J.A. Tropp Random Filters for Compressive Sampling , 2006, 2006 40th Annual Conference on Information Sciences and Systems.