A superconducting antenna-coupled hot-spot microbolometer

We report the electrical properties of an antenna-coupled niobium vacuum-bridge bolometer, operated at a temperature of 4.2 K, in which the thermal isolation is maximized by the vacuum gap between the bridge and the underlying silicon substrate. The device is voltage-biased, which results in a formation of a normal state region in the middle of the bridge. The device shows a current responsivity of −1430 A/W and an amplifier limited electrical noise equivalent power of 1.4×10−14 W/Hz.

[1]  Joseph P. Rice,et al.  Antenna‐coupled high‐Tc air‐bridge microbolometer on silicon , 1994 .

[2]  J. Mather Bolometer noise: nonequilibrium theory. , 1982, Applied optics.

[3]  K. Irwin An application of electrothermal feedback for high resolution cryogenic particle detection , 1995 .

[4]  D. B. Rutledge,et al.  Microbolometers for infrared detection , 1979 .

[5]  Erich N. Grossman,et al.  Lithographic spiral antennas at short wavelengths , 1991 .

[6]  F. Pobell,et al.  Matter and Methods at Low Temperatures , 1992 .

[7]  Erich N. Grossman,et al.  Niobium microbolometers for far-infrared detection , 1995 .

[8]  K. S. Yngvesson,et al.  A two-dimensional hot-spot mixer model for phonon-cooled hot electron bolometers , 2001 .

[9]  T. M. Klapwijk,et al.  Hotspot mixing: A framework for heterodyne mixing in superconducting hot-electron bolometers , 1999 .

[10]  Arttu Luukanen,et al.  Terahertz imaging system based on antenna-coupled microbolometers , 1998, Defense, Security, and Sensing.

[11]  Dean P. Neikirk,et al.  Air-bridge microbolometer for far-infrared detection , 1984 .

[12]  R. Jones,et al.  The General Theory of Bolometer Performance , 1953 .

[13]  Piet A. J. de Korte,et al.  SQUID-based readout schemes for microcalorimeter arrays , 2002 .

[14]  John M. Martinis,et al.  Thermal-response time of superconducting transition-edge microcalorimeters , 1998 .

[15]  S. Wasim,et al.  THERMAL CONDUCTIVITY OF SUPERCONDUCTING NIOBIUM. , 1969 .