Genetic transformation of 'Hamlin' and 'Valencia' sweet orange plants expressing the cry11A gene of Bacillus thuringiensis as another tool to the management of Diaphorina citri (Hemiptera: Liviidae).

[1]  P. Kumar,et al.  Huanglongbing Pandemic: Current Challenges and Emerging Management Strategies , 2022, Plants.

[2]  P. Ollitrault,et al.  Insight into resistance to ‘Candidatus Liberibacter asiaticus,’ associated with Huanglongbing, in Oceanian citrus genotypes , 2022, Frontiers in Plant Science.

[3]  B. Bonning,et al.  Genetic Modification of Bergera koenigii for Expression of the Bacterial Pesticidal Protein Cry1Ba1 , 2022, Frontiers in Plant Science.

[4]  M. Gómez,et al.  Price transmission between international and domestic prices in the Brazilian citrus sector , 2021, International Food and Agribusiness Management Review.

[5]  J. George,et al.  Phytoene desaturase-silenced citrus as a trap crop with multiple cues to attract Diaphorina citri, the vector of Huanglongbing. , 2021, Plant science : an international journal of experimental plant biology.

[6]  L. Peña,et al.  Engineering of citrus to obtain huanglongbing resistance. , 2021, Current opinion in biotechnology.

[7]  R. García-Suárez,et al.  Isolation and characterization of two highly insecticidal, endophytic strains of Bacillus thuringiensis. , 2021, FEMS microbiology ecology.

[8]  Z. Fu,et al.  Dual Functions of a Stable Peptide against Citrus Huanglongbing Disease. , 2021, Trends in plant science.

[9]  Y. Malovichko,et al.  Dissecting the Environmental Consequences of Bacillus thuringiensis Application for Natural Ecosystems , 2021, Toxins.

[10]  R. Shatters,et al.  Crowdsourced Identification of Potential Target Genes for CTV Induced Gene Silencing for Controlling the Citrus Greening Vector Diaphorina citri , 2021, Frontiers in Physiology.

[11]  H. Bouwmeester,et al.  Engineered Orange Ectopically Expressing the Arabidopsis β-Caryophyllene Synthase Is Not Attractive to Diaphorina citri, the Vector of the Bacterial Pathogen Associated to Huanglongbing , 2021, Frontiers in Plant Science.

[12]  K. Zhao,et al.  Overexpression of Salicylic Acid Carboxyl Methyltransferase (CsSAMT1) Enhances Tolerance to Huanglongbing Disease in Wanjincheng Orange (Citrus sinensis (L.) Osbeck) , 2021, International journal of molecular sciences.

[13]  Hailing Jin,et al.  A stable antimicrobial peptide with dual functions of treating and preventing citrus Huanglongbing , 2021, Proceedings of the National Academy of Sciences.

[14]  Nian Wang A promising plant defense peptide against citrus Huanglongbing disease , 2021, Proceedings of the National Academy of Sciences.

[15]  L. Bettucci,et al.  Biological control of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae) by Entomopathogenic fungi and their side effects on natural enemies , 2021 .

[16]  Qing-wen Zhang,et al.  Overexpressing a NPR1-like gene from Citrus paradisi enhanced Huanglongbing resistance in C. sinensis , 2021, Plant Cell Reports.

[17]  R. Monnerat,et al.  Bacillus thuringiensis Effect on the Vegetative Development of Cotton Plants and the Biocontrol of Spodoptera frugiperda , 2020, Agronomy.

[18]  Y. Duan,et al.  ‘Candidatus Liberibacter Asiaticus’ SDE1 Effector Induces Huanglongbing Chlorosis by Downregulating Host DDX3 Gene , 2020, International journal of molecular sciences.

[19]  R. Shatters,et al.  Asian citrus psyllid adults inoculate huanglongbing bacterium more efficiently than nymphs when this bacterium is acquired by early instar nymphs , 2020, Scientific Reports.

[20]  R. Bassanezi,et al.  Incidence of Diaphorina citri Carrying Candidatus Liberibacter asiaticus in Brazil’s Citrus Belt , 2020, Insects.

[21]  G. Kebede Development of Resistance to Bacillus thuringiensis (Bt) Toxin by Insect Pests , 2020 .

[22]  J. Lopes,et al.  Selection of Bacillus thuringiensis strains in citrus and their pathogenicity to Diaphorina citri (Hemiptera: Liviidae) nymphs , 2020, Insect science.

[23]  G. S. Jouzani,et al.  Genetically modified entomopathogenic bacteria, recent developments, benefits and impacts: A review. , 2020, The Science of the total environment.

[24]  S. Lopes,et al.  Overview of citrus huanglongbing spread and management strategies in Brazil , 2020, Tropical Plant Pathology.

[25]  Y. Duan,et al.  Citrus Greening: Management Strategies and Their Economic Impact , 2020, HortScience.

[26]  D. Heckel How do toxins from Bacillus thuringiensis kill insects? An evolutionary perspective. , 2020, Archives of insect biochemistry and physiology.

[27]  J. Grosser,et al.  Potential Mechanisms of AtNPR1 Mediated Resistance against Huanglongbing (HLB) in Citrus , 2020, International journal of molecular sciences.

[28]  E. Southern,et al.  Southern blotting , 2020, Nature Protocols.

[29]  Natalia P. F. Macan,et al.  Citrus Production Under Screen as a Strategy to Protect Grapefruit Trees From Huanglongbing Disease , 2019, Front. Plant Sci..

[30]  E. Stover,et al.  Transgenic citrus plants expressing a ‘Candidatus Liberibacter asiaticus’ prophage protein LasP235 display Huanglongbing-like symptoms , 2019, Agri Gene.

[31]  Nian Wang The Citrus Huanglongbing Crisis and Potential Solutions. , 2019, Molecular plant.

[32]  B. Bonning,et al.  Toxicity of Bacillus thuringiensis-Derived Pesticidal Proteins Cry1Ab and Cry1Ba against Asian Citrus Psyllid, Diaphorina citri (Hemiptera) , 2019, Toxins.

[33]  E. Baldwin,et al.  Effect of Huanglongbing or Greening Disease on Orange Juice Quality, a Review , 2019, Front. Plant Sci..

[34]  S. Gill,et al.  Aedes aegypti Galectin Competes with Cry11Aa for Binding to ALP1 To Modulate Cry Toxicity. , 2018, Journal of agricultural and food chemistry.

[35]  C. Muskus,et al.  Toxic Activity, Molecular Modeling and Docking Simulations of Bacillus thuringiensis Cry11 Toxin Variants Obtained via DNA Shuffling , 2018, Front. Microbiol..

[36]  Xiaojie Liu,et al.  The Current Status and Development of Insect-Resistant Genetically Engineered Poplar in China , 2018, Front. Plant Sci..

[37]  M. L. C. Vieira,et al.  Sweet orange genetic transformation with the attacin A gene under the control of phloem-specific promoters and inoculation with Candidatus Liberibacter asiaticus , 2018, The Journal of Horticultural Science and Biotechnology.

[38]  J. Grosser,et al.  Isolation, characterization, and evaluation of three Citrus sinensis-derived constitutive gene promoters , 2018, Plant Cell Reports.

[39]  Yinsheng Wang,et al.  An effector from the Huanglongbing-associated pathogen targets citrus proteases , 2018, Nature Communications.

[40]  M. Birkett,et al.  Attractiveness of Host Plant Volatile Extracts to the Asian Citrus Psyllid, Diaphorina citri, is Reduced by Terpenoids from the Non-Host Cashew , 2018, Journal of Chemical Ecology.

[41]  J. Bento,et al.  Putative sex pheromone of the Asian citrus psyllid, Diaphorina citri, breaks down into an attractant , 2018, Scientific Reports.

[42]  X. Martini,et al.  Lethal and sub-lethal effects of a novel sulfoximine insecticide, sulfoxaflor, against Asian citrus psyllid and its primary parasitoid under laboratory and field conditions , 2017 .

[43]  J. Setubal,et al.  The Candidatus Liberibacter-Host Interface: Insights into Pathogenesis Mechanisms and Disease Control. , 2017, Annual review of phytopathology.

[44]  L. Stelinski,et al.  Behavioral and hormetic effects of the butenolide insecticide, flupyradifurone, on Asian citrus psyllid, Diaphorina citri , 2017 .

[45]  J. Lopes,et al.  PHLOEM PROMOTERS IN TRANSGENIC SWEET ORANGE ARE DIFFERENTIALLY TRIGGERED BY Candidatus Liberibacter asiaticus , 2017 .

[46]  Leandro Peña,et al.  UvA-DARE ( Digital Academic Repository )-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri , vector of Candidatus , 2017 .

[47]  Heidi Ledford Geneticists enlist engineered virus and CRISPR to battle citrus disease , 2017, Nature.

[48]  J. Bento,et al.  Curry leaf smells better than citrus to females of Diaphorina citri (Hemiptera: Liviidae) , 2017, Arthropod-Plant Interactions.

[49]  G. Mascarin,et al.  Efficacy of entomopathogenic fungi against adult Diaphorina citri from laboratory to field applications , 2017, Journal of Pest Science.

[50]  P. Rougé,et al.  Expression of Bacillus thuringiensis cytolytic toxin (Cyt2Ca1) in citrus roots to control Diaprepes abbreviatus larvae. , 2017, Pesticide biochemistry and physiology.

[51]  Xiuping Zou,et al.  Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing , 2017, Plant Molecular Biology.

[52]  X. Guan,et al.  The colonization of Bacilllus thuringiensis strains in bryophytes , 2017 .

[53]  J. K. Bisht,et al.  Genetic diversity and functional characterization of endophytic Bacillus thuringiensis isolates from the North Western Indian Himalayas , 2017, Annals of Microbiology.

[54]  V. Hernández-Velázquez,et al.  Characterization of Bacillus thuringiensis (Bacillaceae) Strains Pathogenic to Myzus persicae (Hemiptera: Aphididae) , 2016, Florida Entomologist.

[55]  Guy Smagghe,et al.  Asian Citrus Psyllid RNAi Pathway – RNAi evidence , 2016, Scientific Reports.

[56]  M. A. Machado,et al.  Bacterial resistance in AtNPR1 transgenic sweet orange is mediated by priming and involves EDS1 and PR2 , 2016, Tropical Plant Pathology.

[57]  E. Stover,et al.  Overexpression of a Modified Plant Thionin Enhances Disease Resistance to Citrus Canker and Huanglongbing (HLB) , 2016, Front. Plant Sci..

[58]  T. Gottwald,et al.  Repellency of selected Psidium guajava cultivars to the Asian citrus psyllid, Diaphorina citri , 2016 .

[59]  B. Bonning,et al.  Modification of Cry4Aa toward Improved Toxin Processing in the Gut of the Pea Aphid, Acyrthosiphon pisum , 2016, PloS one.

[60]  E. Stover,et al.  Conventional Citrus of Some Scion/Rootstock Combinations Show Field Tolerance under High Huanglongbing Disease Pressure , 2016 .

[61]  Wei Li,et al.  Kn1 gene overexpression drastically improves genetic transformation efficiencies of citrus cultivars , 2016, Plant Cell, Tissue and Organ Culture (PCTOC).

[62]  K. Bowman,et al.  Five New Citrus Rootstocks with Improved Tolerance to Huanglongbing , 2015 .

[63]  J. Grosser,et al.  Transgenic Citrus Expressing an Arabidopsis NPR1 Gene Exhibit Enhanced Resistance against Huanglongbing (HLB; Citrus Greening) , 2015, PloS one.

[64]  W. Tabachnick,et al.  Diaphorina citri (Hemiptera: Liviidae) Vector Competence for the Citrus Greening Pathogen ‘Candidatus Liberibacter Asiaticus’ , 2015, Journal of economic entomology.

[65]  Marcos Antonio Machado,et al.  Incidence of 'Candidatus Liberibacter asiaticus'-Infected Plants Among Citrandarins as Rootstock and Scion Under Field Conditions. , 2015, Phytopathology.

[66]  Ziniu Yu,et al.  Structural Insights into Bacillus thuringiensis Cry, Cyt and Parasporin Toxins , 2014, Toxins.

[67]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[68]  N. Killiny,et al.  Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing). , 2014, Journal of biotechnology.

[69]  W. Dawson,et al.  Exploring the limits of vector construction based on Citrus tristeza virus. , 2014, Virology.

[70]  L. Loguercio,et al.  Bacillus thuringiensis Is an Environmental Pathogen and Host-Specificity Has Developed as an Adaptation to Human-Generated Ecological Niches , 2013, Insects.

[71]  P. Trivedi,et al.  Citrus huanglongbing: a newly relevant disease presents unprecedented challenges. , 2013, Phytopathology.

[72]  Lilian Amorim,et al.  Efficacy of Area-Wide Inoculum Reduction and Vector Control on Temporal Progress of Huanglongbing in Young Sweet Orange Plantings. , 2013, Plant disease.

[73]  B. Bonning,et al.  Retargeting of the Bacillus thuringiensis toxin Cyt2Aa against hemipteran insect pests , 2013, Proceedings of the National Academy of Sciences.

[74]  B. J. Mendes,et al.  GUS expression in sweet oranges (Citrus sinensis L. Osbeck) driven by three different phloem-specific promoters , 2012, Plant Cell Reports.

[75]  M. R. Thorpe,et al.  AtSUC2 has a role for sucrose retrieval along the phloem pathway: evidence from carbon-11 tracer studies. , 2012, Plant science : an international journal of experimental plant biology.

[76]  R. Monnerat,et al.  Endophytic Colonization by Brazilian Strains of Bacillus thuringiensis on Cabbage Seedlings Grown in Vitro , 2012 .

[77]  M. Alves-Ferreira,et al.  Reference Genes for Accurate Transcript Normalization in Citrus Genotypes under Different Experimental Conditions , 2012, PloS one.

[78]  R. Harakava,et al.  Eficiência de transformação genética de citrange 'carrizo' com duas construções gênicas , 2011 .

[79]  T. Gottwald Current epidemiological understanding of citrus Huanglongbing . , 2010, Annual review of phytopathology.

[80]  M. L. C. Vieira,et al.  Transgenic Sweet Orange (Citrus sinensis L. Osbeck) Expressing the attacin A Gene for Resistance to Xanthomonas citri subsp. citri , 2010, Plant Molecular Biology Reporter.

[81]  H. Doddapaneni,et al.  A new diagnostic system for ultra-sensitive and specific detection and quantification of Candidatus Liberibacter asiaticus, the bacterium associated with citrus Huanglongbing. , 2010, Journal of microbiological methods.

[82]  B. J. Mendes,et al.  Reduction in susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis expressing the rice Xa21 gene. , 2010 .

[83]  J. González-Cabrera,et al.  Diversity of Bacillus thuringiensis strains isolated from citrus orchards in spain and evaluation of their insecticidal activity against Ceratitis capitata. , 2009, Journal of microbiology and biotechnology.

[84]  J. Grosser,et al.  Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus , 2009, Plant Cell, Tissue and Organ Culture (PCTOC).

[85]  G. Capdeville,et al.  Translocation and insecticidal activity of Bacillus thuringiensis living inside of plants , 2009, Microbial biotechnology.

[86]  Y. Rahbé,et al.  Effects of Bacillus thuringiensis δ-Endotoxins on the Pea Aphid (Acyrthosiphon pisum) , 2009, Applied and Environmental Microbiology.

[87]  A. Srivastava,et al.  Functional Characterization of the Arabidopsis AtSUC2 Sucrose/H+ Symporter by Tissue-Specific Complementation Reveals an Essential Role in Phloem Loading But Not in Long-Distance Transport1[OA] , 2008, Plant Physiology.

[88]  T. Hothorn,et al.  Simultaneous Inference in General Parametric Models , 2008, Biometrical journal. Biometrische Zeitschrift.

[89]  W. Dawson,et al.  A stable RNA virus-based vector for citrus trees. , 2007, Virology.

[90]  Jack A. M. Leunissen,et al.  Turning CFCs into salt. , 1996, Nucleic Acids Res..

[91]  Santiago Garcia-Vallvé,et al.  Working toward a new NIOSH. , 1996, Nucleic Acids Res..

[92]  J. Bové,et al.  Huanglongbing: a destructive, newly-emerging, century-old disease of citrus [Asia; South Africa; Brazil; Florida] , 2006 .

[93]  Sheng Zhao,et al.  Comprehensive Algorithm for Quantitative Real-Time Polymerase Chain Reaction , 2005, J. Comput. Biol..

[94]  M. Takita,et al.  First Report of the Causal Agent of Huanglongbing ("Candidatus Liberibacter asiaticus") in Brazil. , 2004, Plant disease.

[95]  L. Peña,et al.  Early events in Agrobacterium-mediated genetic transformation of citrus explants. , 2004, Annals of botany.

[96]  B. J. Mendes,et al.  The use of the PMI/mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L. Osbeck) , 2003, Plant Cell Reports.

[97]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[98]  F. Villalobos,et al.  Characterization of cry Genes in a Mexican Bacillus thuringiensis Strain Collection , 1998, Applied and Environmental Microbiology.

[99]  F. S. Walters,et al.  Toxicity of Bacillus thuringiensisδ‐ endotoxins toward the potato aphid in an artificial diet bioassay , 1995 .

[100]  F. Skoog,et al.  A revised medium for rapid growth and bio assays with tobacco tissue cultures , 1962 .

[101]  Ahmed,et al.  TRANSGENIC MANDARIN (CITRUS RETICULATA L.) INCLUDING ENDOTOXIN CRY1AB GENE FOR RESISTANCE PHYLLOCNISTIS CITRELLA STAINTON , 2021 .

[102]  M. Machado,et al.  Desenvolvimento de estratégias alternativas visando ao controle do huanglongbing , 2019, Citrus Research & Technology.

[103]  V. Orbović,et al.  Overexpression of the Arabidopsis NPR1 protein in citrus confers tolerance to Huanglongbing , 2018 .

[104]  M. Soberón,et al.  Insecticidal Proteins from Bacillus thuringiensis and Their Mechanism of Action , 2017 .

[105]  Tim R. Gottwald,et al.  Huanglongbing solutions and the need for anti-conventional thought , 2017 .

[106]  M. L. C. Vieira,et al.  Genetic transformation of citrus sinensis 'hamlin' with attacin a driven by a phloem tissue-specific promoter for resistance to Candidatus liberibacter spp. , 2015 .

[107]  M. Soberón,et al.  Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. , 2013, FEMS microbiology reviews.

[108]  B. J. Mendes,et al.  Genetic transformation of sweet oranges with the D 4 E 1 gene driven by the AtPP 2 promoter , 2013 .

[109]  J. Grosser,et al.  Evaluation of four phloem-specific promoters in vegetative tissues of transgenic citrus plants. , 2012, Tree physiology.

[110]  E. Kitajima,et al.  First Report of a Huanglongbing-Like Disease of Citrus in Sao Paulo State, Brazil and Association of a New Liberibacter Species, "Candidatus Liberibacter americanus", with the Disease. , 2005, Plant disease.

[111]  J. Doyle,et al.  Isolation of plant DNA from fresh tissue , 1990 .