A projector-splitting integrator for dynamical low-rank approximation

The dynamical low-rank approximation of time-dependent matrices is a low-rank factorization updating technique. It leads to differential equations for factors of the matrices, which need to be solved numerically. We propose and analyze a fully explicit, computationally inexpensive integrator that is based on splitting the orthogonal projector onto the tangent space of the low-rank manifold. As is shown by theory and illustrated by numerical experiments, the integrator enjoys robustness properties that are not shared by any standard numerical integrator. This robustness can be exploited to change the rank adaptively. Another application is in optimization algorithms for low-rank matrices where truncation back to the given low rank can be done efficiently by applying a step of the integrator proposed here.

[1]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[2]  U. Manthe,et al.  The multi-configurational time-dependent Hartree approach , 1990 .

[3]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[4]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[5]  Timo Eirola,et al.  On Smooth Decompositions of Matrices , 1999, SIAM J. Matrix Anal. Appl..

[6]  G. Quispel,et al.  Acta Numerica 2002: Splitting methods , 2002 .

[7]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[8]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[9]  Othmar Koch,et al.  Dynamical Low-Rank Approximation , 2007, SIAM J. Matrix Anal. Appl..

[10]  C. Lubich From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .

[11]  Christian Lubich,et al.  Dynamical low-rank approximation: applications and numerical experiments , 2008, Math. Comput. Simul..

[12]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[13]  Hans-Dieter Meyer,et al.  Comprar Multidimensional Quantum Dynamics: MCTDH Theory and Applications | Hans-Dieter Meyer | 9783527320189 | Wiley , 2009 .

[14]  G. Worth,et al.  Multidimensional Quantum Dynamics , 2009 .

[15]  Hans-Dieter Meyer,et al.  Multidimensional quantum dynamics : MCTDH theory and applications , 2009 .

[16]  Othmar Koch,et al.  Dynamical Tensor Approximation , 2010, SIAM J. Matrix Anal. Appl..

[17]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[18]  Reinhold Schneider,et al.  Efficient time-stepping scheme for dynamics on TT-manifolds , 2012 .

[19]  Reinhold Schneider,et al.  Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors , 2013, SIAM J. Matrix Anal. Appl..

[20]  Tobias Jahnke,et al.  On the approximation of high-dimensional differential equations in the hierarchical Tucker format , 2013, BIT Numerical Mathematics.

[21]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.