Edinburgh Research Explorer Differential operators and Cherednik algebras

. We establish a link between two geometric approaches to the representation theory of rational Cherednik algebras of type A : one based on a noncommutative Proj construction [GS1]; the other involving quantum hamiltonian reduction of an algebra of differential operators [GG]. In the present paper, we combine these two points of view by showing that the process of hamiltonian reduction intertwines a naturally defined geometric twist functor on D -modules with the shift functor for the Cherednik algebra. That enables us to give a direct and relatively short proof of the key result [GS1, Theorem 1.4] without recourse to Haiman’s deep results on the n ! theorem [Ha1]. We also show that the characteristic cycles defined independently in these two approaches are equal, thereby confirming a conjecture from [GG]. that it a filtered vector space isomorphism. We first show that µ p,q injective. this

[1]  宮原 大樹 Filtered Noetherian rings , 2009 .

[2]  P. Etingof,et al.  Parabolic induction and restriction functors for rational Cherednik algebras , 2008, 0803.3639.

[3]  Masaki Kashiwara,et al.  Microlocalization of rational Cherednik algebras , 2007, 0705.1245.

[4]  V. Ginzburg,et al.  Cherednik algebras and Hilbert schemes in characteristic , 2006 .

[5]  I. Gordon,et al.  Rational Cherednik algebras and Hilbert schemes, II: Representations and sheaves , 2004, math/0410293.

[6]  Wee Liang Gan,et al.  Almost-commuting variety, D-modules, and Cherednik algebras , 2004, math/0409262.

[7]  J. T. Stafford,et al.  Rational Cherednik algebras and Hilbert schemes , 2004, math/0407516.

[8]  V. Ginzburg,et al.  Cherednik algebras and Hilbert schemes in characteristic p , 2003, math/0312474.

[9]  V. Ginzburg,et al.  Finite-dimensional representations of rational Cherednik algebras , 2002, math/0208138.

[10]  A. Grothendieck,et al.  Rev\^etements \'etales et groupe fondamental (SGA 1) (version originale) , 2002, math/0206203.

[11]  C. Dezélée Representations de dimension finie de l'algebre de Cherednik rationnelle , 2001, math/0111210.

[12]  J. McConnell,et al.  Noncommutative Noetherian Rings , 2001 .

[13]  V. Ginzburg,et al.  Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism , 2000, math/0011114.

[14]  Mark Haiman,et al.  Hilbert schemes, polygraphs and the Macdonald positivity conjecture , 2000, math/0010246.

[15]  M. P. Holland Quantization of the Marsden-Weinstein reduction for extended Dynkin quivers , 1999 .

[16]  R. Hartshorne Book Review: Local cohomology: An algebraic introduction with geometric applications , 1999 .

[17]  中島 啓 Lectures on Hilbert schemes of points on surfaces , 1999 .

[18]  Mark D. Haiman,et al.  t, q-Catalan numbers and the Hilbert scheme , 1998, Discret. Math..

[19]  B. Blackadar Operator Algebras , 1998 .

[20]  G. Heckman A Remark on the Dunkl Differential—Difference Operators , 1991 .

[21]  Günter Krause,et al.  Growth of Algebras and Gelfand-Kirillov Dimension , 1985 .

[22]  J. T. Stafford Homological properties of the enveloping algebra U(Sl2) , 1982, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  渡辺 敬一 Certain invariant subrings are Gorenstein , 1976 .