Spatial diffusion of water in carbon nanotubes: from fickian to ballistic motion.

We investigate the spatial variation of the axial, radial, and tangential diffusion coefficients in carbon nanotubes (CNTs) of various diameters. The effect of confinement and CNT wall on the diffusion coefficient is studied. On the basis of the spatial variation of the diffusion coefficient, the diffusion mechanisms in different regions of the nanotube are identified. The dependence of the diffusion coefficient on the carbon-water interaction parameter is investigated. The average diffusion coefficient in the nanotube as a function of the nanotube diameter is computed, and the diffusion mechanisms, including the transition regimes, are identified. The results are analyzed via hydrogen bonds and water orientations.

[1]  W. Goddard,et al.  Entropy and the driving force for the filling of carbon nanotubes with water , 2011, Proceedings of the National Academy of Sciences.

[2]  Peter T. Cummings,et al.  Phase Transitions of Water in Graphite and Mica Pores , 2011 .

[3]  Anil Kumar,et al.  Single-file diffusion of confined water inside SWNTs: an NMR study. , 2010, ACS nano.

[4]  Alessio Alexiadis,et al.  Molecular simulation of water in carbon nanotubes. , 2008, Chemical reviews.

[5]  C. Dasgupta,et al.  Strongly anisotropic orientational relaxation of water molecules in narrow carbon nanotubes and nanorings. , 2008, ACS nano.

[6]  Joshua D. Moore,et al.  Diffusion dynamics of water controlled by topology of potential energy surface inside carbon nanotubes , 2008 .

[7]  Francois Gygi,et al.  Water confined in nanotubes and between graphene sheets: a first principle study. , 2008, Journal of the American Chemical Society.

[8]  Sony Joseph,et al.  Why are carbon nanotubes fast transporters of water? , 2008, Nano letters.

[9]  C. Dasgupta,et al.  Structure and dynamics of confined water inside narrow carbon nanotubes. , 2007, Journal of nanoscience and nanotechnology.

[10]  N. Quirke,et al.  Fluid flow in carbon nanotubes and nanopipes. , 2007, Nature nanotechnology.

[11]  Gilbert W. Collins,et al.  Laser-driven shock experiments on precompressed water: Implications for "icy" giant planets. , 2006, The Journal of chemical physics.

[12]  C. Grigoropoulos,et al.  Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes , 2006, Science.

[13]  Itsuo Hanasaki,et al.  Water flow through carbon nanotube junctions as molecular convergent nozzles , 2006 .

[14]  A. Nakatani,et al.  Flow structure of water in carbon nanotubes: poiseuille type or plug-like? , 2006, The Journal of chemical physics.

[15]  A. Striolo The mechanism of water diffusion in narrow carbon nanotubes. , 2006, Nano letters.

[16]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[17]  Mainak Majumder,et al.  Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes , 2005, Nature.

[18]  A. Noy,et al.  Fabrication of a carbon nanotube-embedded silicon nitride membrane for studies of nanometer-scale mass transport , 2004 .

[19]  P. Koumoutsakos,et al.  Multiphase water flow inside carbon nanotubes , 2004 .

[20]  Michael L Klein,et al.  Understanding nature's design for a nanosyringe. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Rodney Andrews,et al.  Aligned Multiwalled Carbon Nanotube Membranes , 2004, Science.

[22]  N. Aluru,et al.  Anomalously Immobilized Water: A New Water Phase Induced by Confinement in Nanotubes , 2003 .

[23]  Petros Koumoutsakos,et al.  On the Water−Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes , 2003 .

[24]  M. C. Gordillo,et al.  Microscopic dynamics of confined supercritical water , 2002 .

[25]  R. Näätänen,et al.  Psychobiology: Speech sounds learned by sleeping newborns , 2002, Nature.

[26]  G. Hummer,et al.  Water conduction through the hydrophobic channel of a carbon nanotube , 2001, Nature.

[27]  L. Nilsson,et al.  Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K , 2001 .

[28]  G. Richmond,et al.  Water at Hydrophobic Surfaces: Weak Hydrogen Bonding and Strong Orientation Effects , 2001, Science.

[29]  Paola Gallo,et al.  Water in confined geometries : experiments and simulations , 2000 .

[30]  Shin-Ho Chung,et al.  The effect of hydrophobic and hydrophilic channel walls on the structure and diffusion of water and ions , 1999 .

[31]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[32]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[33]  A. Geiger,et al.  Phase equilibria of water in cylindrical nanopores , 2001 .

[34]  P Mark,et al.  298KでのTIP3P,SPC及びSPC/E水モデルの構造及び動力学 , 2001 .

[35]  D. Chandler,et al.  Hydrogen-bond kinetics in liquid water , 1996, Nature.

[36]  R. Mills,et al.  Self-diffusion in normal and heavy water in the range 1-45.deg. , 1973 .