The Second Flight of the Sunrise Balloon-borne Solar Observatory: Overview of Instrument Updates, the Flight, the Data, and First Results

The Sunrise balloon-borne solar observatory, consisting of a 1 m aperture telescope that provides a stabilized image to a UV filter imager and an imaging vector polarimeter, carried out its second science flight in 2013 June. It provided observations of parts of active regions at high spatial resolution, including the first high-resolution images in the Mg ii k line. The obtained data are of very high quality, with the best UV images reaching the diffraction limit of the telescope at 3000 Å after Multi-Frame Blind Deconvolution reconstruction accounting for phase-diversity information. Here a brief update is given of the instruments and the data reduction techniques, which includes an inversion of the polarimetric data. Mainly those aspects that evolved compared with the first flight are described. A tabular overview of the observations is given. In addition, an example time series of a part of the emerging active region NOAA AR 11768 observed relatively close to disk center is described and discussed in some detail. The observations cover the pores in the trailing polarity of the active region, as well as the polarity inversion line where flux emergence was ongoing and a small flare-like brightening occurred in the course of the time series. The pores are found to contain magnetic field strengths ranging up to 2500 G, and while large pores are clearly darker and cooler than the quiet Sun in all layers of the photosphere, the temperature and brightness of small pores approach or even exceed those of the quiet Sun in the upper photosphere.

[1]  J. C. del Toro Iniesta,et al.  The Imaging Magnetograph eXperiment (IMaX) for the Sunrise Balloon-Borne Solar Observatory , 2010, 1009.1095.

[2]  S. Solanki,et al.  Moving Magnetic Features Around a Pore , 2016, 1609.05664.

[3]  J. C. del Toro Iniesta,et al.  FULLY RESOLVED QUIET-SUN MAGNETIC FLUX TUBE OBSERVED WITH THE Sunrise/IMaX INSTRUMENT , 2010, 1009.0996.

[4]  J. C. del Toro Iniesta,et al.  BRIGHT POINTS IN THE QUIET SUN AS OBSERVED IN THE VISIBLE AND NEAR-UV BY THE BALLOON-BORNE OBSERVATORY Sunrise , 2010, 1009.1693.

[5]  E. Parker Sunspots and the physics of magnetic flux tubes. IX. Umbral dots and longitudinal overstability , 1979 .

[6]  S. Solanki,et al.  High-frequency Oscillations in Small Magnetic Elements Observed with Sunrise/SuFI , 2016, 1611.09302.

[7]  Mats G. Löfdahl,et al.  Solar Image Restoration By Use Of Multi-frame Blind De-convolution With Multiple Objects And Phase Diversity , 2005 .

[8]  S. Solanki,et al.  Probing deep photospheric layers of the quiet Sun with high magnetic sensitivity , 2016, 1605.06324.

[9]  S. Solanki,et al.  Brightness of Solar Magnetic Elements As a Function of Magnetic Flux at High Spatial Resolution , 2017, 1701.00759.

[10]  James R. Fienup,et al.  Joint estimation of object and aberrations by using phase diversity , 1992 .

[11]  J. C. del Toro Iniesta,et al.  FIRST HIGH-RESOLUTION IMAGES OF THE SUN IN THE 2796 Å Mg ii k LINE , 2013, 1309.5213.

[12]  A. Álvarez-Herrero,et al.  The Sunrise Mission , 2010, 1009.2689.

[13]  G. Scharmer,et al.  Observational Manifestations of Solar Magnetoconvection: Center-to-Limb Variation , 2004, astro-ph/0406160.

[14]  S. Solanki,et al.  A New MHD-assisted Stokes Inversion Technique , 2016, 1611.05175.

[15]  J. C. del Toro Iniesta,et al.  MAGNETIC LOOPS IN THE QUIET SUN , 2010, 1009.4715.

[16]  J. C. del Toro Iniesta,et al.  DETECTION OF LARGE ACOUSTIC ENERGY FLUX IN THE SOLAR ATMOSPHERE , 2010, 1009.4795.

[17]  S. Solanki,et al.  Photospheric response to EB-like event , 2016, 1609.03817.

[18]  G. Scharmer,et al.  Detection of Convective Downflows in a Sunspot Penumbra , 2011, Science.

[19]  S. Solanki,et al.  ERRATUM:“CONVECTIVE NATURE OF SUNSPOT PENUMBRAL FILAMENTS: DISCOVERY OF DOWNFLOWS IN THE DEEP PHOTOSPHERE” (2011, ApJ, 734, L18) , 2011 .

[20]  H. Anwand,et al.  The Filter Imager SuFI and the Image Stabilization and Light Distribution System ISLiD of the Sunrise Balloon-Borne Observatory: Instrument Description , 2010, 1009.1037.

[21]  B. Pontieu,et al.  Chromospheric Alfvénic Waves Strong Enough to Power the Solar Wind , 2007, Science.

[22]  L. S. Anusha,et al.  Estimation of the Magnetic Flux Emergence Rate in the Quiet Sun from Sunrise Data , 2016, 1611.06432.

[23]  S. Solanki,et al.  Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields , 2016, 1610.07484.

[24]  B. R. Cobo,et al.  Analysis of a spatially deconvolved solar pore , 2016, 1605.01796.

[25]  S. Solanki,et al.  Vertical flows and mass flux balance of sunspot umbral dots , 2013, 1305.1164.

[26]  J. Owens,et al.  The Solar Optical Telescope for the Hinode Mission: An Overview , 2007, 0711.1715.

[27]  T. Berger,et al.  Three-Dimensional Structure of the Active Region Photosphere as Revealed by High Angular Resolution , 2004 .

[28]  A M Title,et al.  Small-Scale Jetlike Features in Penumbral Chromospheres , 2007, Science.

[29]  S. Solanki,et al.  Photospheric Response to an Ellerman Bomb-like Event - An Analogy of Sunrise/IMaX Observations and MHD Simulations , 2017 .

[30]  J. C. del Toro Iniesta,et al.  To appear in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 QUIET SUN INTERNETWORK MAGNETIC FIELDS FROM THE INVERSION OF HINODE MEASUREMENTS , 2022 .

[31]  J. Beckers,et al.  The intensity, velocity and magnetic structure of a sunspot region , 1968 .

[32]  J. C. del Toro Iniesta,et al.  Sunrise/IMaX OBSERVATIONS OF CONVECTIVELY DRIVEN VORTEX FLOWS IN THE SUN , 2008, 0809.3885.

[33]  S. Solanki,et al.  Magneto-static Modeling from Sunrise/IMaX: Application to an Active Region Observed with Sunrise II , 2017, 1701.01458.

[34]  A. Álvarez-Herrero,et al.  The Wave-Front Correction System for the Sunrise Balloon-Borne Solar Observatory , 2010, 1009.3196.

[35]  J. C. del Toro Iniesta,et al.  A Tale of Two Emergences: Sunrise II Observations of Emergence Sites in a Solar Active Region , 2016, 1610.03531.

[36]  I. S. Requerey,et al.  Spectropolarimetric Evidence for a Siphon Flow along an Emerging Magnetic Flux Tube , 2016, 1611.06732.

[37]  L. Rayleigh Investigations in optics, with special reference to the spectroscope , 1880 .

[38]  T. Berger,et al.  The Horizontal Magnetic Flux of the Quiet-Sun Internetwork as Observed with the Hinode Spectro-Polarimeter , 2008 .

[39]  Dan Kiselman,et al.  Dark cores in sunspot penumbral filaments , 2002, Nature.

[40]  S. Solanki,et al.  QUIET-SUN INTENSITY CONTRASTS IN THE NEAR-ULTRAVIOLET AS MEASURED FROM Sunrise , 2010, 1009.1050.

[41]  Lord Rayleigh F.R.S. LVI. Investigations in optics, with special reference to the spectroscope , 1879 .

[42]  M. Schuessler,et al.  Magnetoconvection in a Sunspot Umbra , 2006, astro-ph/0603078.

[43]  S. Solanki,et al.  Transverse Oscillations in Slender Ca ii H Fibrils Observed with Sunrise/SuFI , 2016, 1610.07449.

[44]  H. Ji,et al.  OBSERVATION OF ULTRAFINE CHANNELS OF SOLAR CORONA HEATING , 2012 .

[45]  Mats G. Lofdahl,et al.  Evaluation of phase-diversity techniques for solar-image restoration , 1996 .

[46]  S. Solanki,et al.  Comparison of solar photospheric bright points between SUNRISE observations and MHD simulations , 2014, 1406.1387.

[47]  J. C. del Toro Iniesta,et al.  TRANSVERSE COMPONENT OF THE MAGNETIC FIELD IN THE SOLAR PHOTOSPHERE OBSERVED BY Sunrise , 2010, 1008.1535.

[48]  J. C. del Toro Iniesta,et al.  MESOGRANULATION AND THE SOLAR SURFACE MAGNETIC FIELD DISTRIBUTION , 2010, 1012.4481.

[49]  A. Choudhuri The dynamics of magnetically trapped fluids. I - Implications for umbral dots and penumbral grains , 1986 .

[50]  J. C. del Toro Iniesta,et al.  Oscillations on Width and Intensity of Slender Ca ii H Fibrils from Sunrise/SuFI , 2017, 1701.02801.

[51]  S. Solanki,et al.  UNNOTICED MAGNETIC FIELD OSCILLATIONS IN THE VERY QUIET SUN REVEALED BY SUNRISE/IMaX , 2011, 1103.0145.

[52]  S. Solanki,et al.  COMPARISON BETWEEN Mg ii k AND Ca ii H IMAGES RECORDED BY SUNRISE/SuFI , 2014 .

[53]  S. Solanki,et al.  Morphological Properties of Slender Ca H Fibrils Observed by Sunrise II , 2016, 1612.00319.

[54]  Ubiquitous quiet-Sun jets , 2011, 1104.5564.

[55]  J. Stenflo,et al.  Model Calculations of the Photospheric Layers of Solar Magnetic Fluxtubes , 1990 .

[56]  J. C. del Toro Iniesta,et al.  Convectively Driven Sinks and Magnetic Fields in the Quiet-Sun , 2016, 1610.07622.

[57]  S. Solanki,et al.  Stratification of Sunspot Umbral Dots from Inversion of Stokes Profiles Recorded by Hinode , 2008, 0805.4324.

[58]  J. C. del Toro Iniesta,et al.  SUPERSONIC MAGNETIC UPFLOWS IN GRANULAR CELLS OBSERVED WITH Sunrise/IMaX , 2010, 1009.1227.

[59]  J. C. del Toro Iniesta,et al.  THE HISTORY OF A QUIET-SUN MAGNETIC ELEMENT REVEALED BY IMaX/Sunrise , 2014, 1405.2837.

[60]  J. Hirzberger,et al.  Bright fibrils in Ca II K , 2009, 0905.3124.

[61]  Kinematics of Magnetic Bright Features in the Solar Photosphere , 2016, 1610.07634.

[62]  S. Solanki,et al.  CONVECTIVE NATURE OF SUNSPOT PENUMBRAL FILAMENTS: DISCOVERY OF DOWNFLOWS IN THE DEEP PHOTOSPHERE , 2011, 1105.1877.

[63]  J. P. Mehltretter Observations of photospheric faculae at the center of the solar disk , 1974 .

[64]  S. Solanki,et al.  Peripheral downflows in sunspot penumbrae , 2013, 1308.0466.

[65]  S. Solanki,et al.  Inclinations of small quiet-Sun magnetic features based on a new geometric approach , 2014, 1408.2443.

[66]  J. C. del Toro Iniesta,et al.  Sunrise: INSTRUMENT, MISSION, DATA, AND FIRST RESULTS , 2010, 1008.3460.

[67]  S. Solanki,et al.  Performance validation of phase diversity image reconstruction techniques , 2011 .

[68]  S. Solanki,et al.  Slender Ca ii H Fibrils Mapping Magnetic Fields in the Low Solar Chromosphere , 2016, 1610.03104.

[69]  C. Keller,et al.  On the Origin of Solar Faculae , 2004 .

[70]  V. Pillet,et al.  The Thermal and Magnetic Structure of Umbral Dots from the Inversion of High-Resolution Full Stokes Observations , 2004 .

[71]  J. C. del Toro Iniesta,et al.  DETECTION OF VORTEX TUBES IN SOLAR GRANULATION FROM OBSERVATIONS WITH Sunrise , 2010, 1009.4723.