Membrane proteins in magnetically aligned phospholipid polymer discs for solid-state NMR spectroscopy.

[1]  J. Frank,et al.  Structure and activity of lipid bilayer within a membrane-protein transporter , 2018, Proceedings of the National Academy of Sciences.

[2]  R. Callaghan,et al.  Methods of reconstitution to investigate membrane protein function. , 2018, Methods.

[3]  S. Opella,et al.  Macrodiscs Comprising SMALPs for Oriented Sample Solid-State NMR Spectroscopy of Membrane Proteins. , 2018, Biophysical journal.

[4]  Jonathan K. Williams,et al.  Structure and Dynamics of Membrane Proteins from Solid-State NMR. , 2018, Annual review of biophysics.

[5]  E. Tajkhorshid,et al.  Structure of the Alternative Complex III in a supercomplex with cytochrome oxidase , 2018, Nature.

[6]  J. Sturgis,et al.  Modifying styrene-maleic acid co-polymer for studying lipid nanodiscs. , 2018, Biochimica et biophysica acta. Biomembranes.

[7]  L. Andreas,et al.  1H magic-angle spinning NMR evolves as a powerful new tool for membrane proteins. , 2018, Journal of magnetic resonance.

[8]  G. Wagner,et al.  Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR , 2017, Nature Protocols.

[9]  V. Ladizhansky,et al.  Applications of solid-state NMR to membrane proteins. , 2017, Biochimica et biophysica acta. Proteins and proteomics.

[10]  A. Rothnie,et al.  Structure and function of membrane proteins encapsulated in a polymer-bound lipid bilayer. , 2017, Biochimica et biophysica acta. Biomembranes.

[11]  S. Opella,et al.  Applications of NMR to membrane proteins. , 2017, Archives of biochemistry and biophysics.

[12]  Hongjun Liang,et al.  Polymer-encased nanodiscs with improved buffer compatibility , 2017, Scientific Reports.

[13]  F. Marassi,et al.  Structural Insights into the Yersinia pestis Outer Membrane Protein Ail in Lipid Bilayers. , 2017, The journal of physical chemistry. B.

[14]  A. Bobkov,et al.  High resolution solid-state NMR spectroscopy of the Yersinia pestis outer membrane protein Ail in lipid membranes , 2017, Journal of biomolecular NMR.

[15]  O. Vinogradova,et al.  Nanodiscs and solution NMR: preparation, application and challenges , 2017, Nanotechnology reviews.

[16]  A. Meister,et al.  Solubilization of Membrane Proteins into Functional Lipid‐Bilayer Nanodiscs Using a Diisobutylene/Maleic Acid Copolymer , 2017, Angewandte Chemie.

[17]  A. Goldman,et al.  A method for detergent-free isolation of membrane proteins in their local lipid environment , 2016, Nature Protocols.

[18]  Marie‐Eve Aubin‐Tam,et al.  SMA-SH: Modified Styrene-Maleic Acid Copolymer for Functionalization of Lipid Nanodiscs. , 2016, Biomacromolecules.

[19]  O. Nosjean,et al.  Detergent-free Isolation of Functional G Protein-Coupled Receptors into Nanometric Lipid Particles. , 2016, Biochemistry.

[20]  A. Arnold,et al.  In-Cell Solid-State NMR: An Emerging Technique for the Study of Biological Membranes. , 2015, Biophysical journal.

[21]  J. Killian,et al.  The styrene–maleic acid copolymer: a versatile tool in membrane research , 2015, European Biophysics Journal.

[22]  S. Keller,et al.  Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants. , 2015, Nanoscale.

[23]  C. Schwieters,et al.  A Practical Implicit Membrane Potential for NMR Structure Calculations of Membrane Proteins. , 2015, Biophysical journal.

[24]  M. Auger,et al.  Membrane Interactions of Synthetic Peptides with Antimicrobial Potential: Effect of Electrostatic Interactions and Amphiphilicity , 2015, Probiotics and Antimicrobial Proteins.

[25]  M. Auger,et al.  Oriented samples: a tool for determining the membrane topology and the mechanism of action of cationic antimicrobial peptides by solid-state NMR , 2015, Biophysical Reviews.

[26]  F. Marassi,et al.  Influence of the lipid membrane environment on structure and activity of the outer membrane protein Ail from Yersinia pestis. , 2015, Biochimica et biophysica acta.

[27]  J. Killian,et al.  Detergent-free isolation, characterization, and functional reconstitution of a tetrameric K+ channel: The power of native nanodiscs , 2014, Proceedings of the National Academy of Sciences.

[28]  Mohammed Jamshad,et al.  Detergent-free purification of ABC (ATP-binding-cassette) transporters. , 2014, The Biochemical journal.

[29]  T. Cross,et al.  Solid state NMR: The essential technology for helical membrane protein structural characterization. , 2014, Journal of magnetic resonance.

[30]  Huan‐Xiang Zhou,et al.  Influences of membrane mimetic environments on membrane protein structures. , 2013, Annual review of biophysics.

[31]  S. Opella,et al.  Structure of the Chemokine Receptor CXCR1 in Phospholipid Bilayers , 2012, Nature.

[32]  S. Opella,et al.  Optimization of purification and refolding of the human chemokine receptor CXCR1 improves the stability of proteoliposomes for structure determination. , 2012, Biochimica et biophysica acta.

[33]  S. Opella,et al.  Structure determination of a membrane protein in proteoliposomes. , 2012, Journal of the American Chemical Society.

[34]  Hector Viadiu,et al.  Nanodiscs versus macrodiscs for NMR of membrane proteins. , 2011, Biochemistry.

[35]  S. Opella,et al.  A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field. , 2011, Journal of magnetic resonance.

[36]  Huan-Xiang Zhou,et al.  Influence of solubilizing environments on membrane protein structures. , 2011, Trends in biochemical sciences.

[37]  S. Opella,et al.  Structure and dynamics of the membrane-bound form of Pf1 coat protein: implications of structural rearrangement for virus assembly. , 2010, Biophysical journal.

[38]  S. Opella,et al.  Probes for high field solid-state NMR of lossy biological samples. , 2010, Journal of magnetic resonance.

[39]  I. Bertini,et al.  NMR in structural proteomics and beyond. , 2010, Progress in nuclear magnetic resonance spectroscopy.

[40]  T. Knowles,et al.  Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. , 2009, Journal of the American Chemical Society.

[41]  Michael Y. Galperin,et al.  Co-evolution of primordial membranes and membrane proteins. , 2009, Trends in biochemical sciences.

[42]  S. Opella,et al.  An efficient (1)H/(31)P double-resonance solid-state NMR probe that utilizes a scroll coil. , 2007, Journal of magnetic resonance.

[43]  S. Opella,et al.  Selective averaging for high-resolution solid-state NMR spectroscopy of aligned samples. , 2007, Journal of magnetic resonance.

[44]  S. Opella,et al.  Assigning solid-state NMR spectra of aligned proteins using isotropic chemical shifts. , 2006, Journal of magnetic resonance.

[45]  S. Opella,et al.  Structure determination of a membrane protein with two trans-membrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy. , 2006, Journal of the American Chemical Society.

[46]  M. Auger,et al.  Biophysical studies of the interactions between 14-mer and 21-mer model amphipathic peptides and membranes: insights on their modes of action. , 2006, Biochimica et biophysica acta.

[47]  G. Marius Clore,et al.  Using Xplor-NIH for NMR molecular structure determination , 2006 .

[48]  A Nevzorov,et al.  Structure determination of membrane proteins by NMR spectroscopy. , 2002, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[49]  S. Sligar,et al.  Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[50]  F. Marassi A simple approach to membrane protein secondary structure and topology based on NMR spectroscopy. , 2001, Biophysical journal.

[51]  S. Opella,et al.  A solid-state NMR index of helical membrane protein structure and topology. , 2000, Journal of magnetic resonance.

[52]  J Wang,et al.  Imaging membrane protein helical wheels. , 2000, Journal of magnetic resonance.

[53]  M. Auger Membrane structure and dynamics as viewed by solid-state NMR spectroscopy. , 1997, Biophysical chemistry.

[54]  P. Macdonald Deuterium NMR and the Topography of Surface Electrostatic Charge , 1997 .

[55]  P. Hajduk,et al.  Discovering High-Affinity Ligands for Proteins: SAR by NMR , 1996, Science.

[56]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[57]  F. Marassi,et al.  Response of the headgroup of phosphatidylglycerol to membrane surface charge as studied by deuterium and phosphorus-31 nuclear magnetic resonance. , 1991, Biochemistry.

[58]  H. Jarrell,et al.  Glycerolipids: common features of molecular motion in bilayers. , 1990, Biochemistry.

[59]  J. Seelig Deuterium magnetic resonance: theory and application to lipid membranes , 1977, Quarterly Reviews of Biophysics.

[60]  Griffin Rg Letter: Observation of the effect of water on the 31P nuclear magnetic resonance spectra of dipalmitoyllecithin. , 1976 .

[61]  G. Radda,et al.  Application of 31P NMR to model and biological membrane systems , 1975, FEBS letters.

[62]  C. Schwieters,et al.  High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH , 2017, Journal of biomolecular NMR.

[63]  C. Dabney-Smith,et al.  Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies. , 2015, Biochimica et biophysica acta.

[64]  Charles D Schwieters,et al.  The Xplor-NIH NMR molecular structure determination package. , 2003, Journal of magnetic resonance.