Coupling global chemistry transport models to ECMWF’s integrated forecast system

Abstract. The implementation and application of a newly developed coupled system combining ECMWF's integrated forecast system (IFS) with global chemical transport models (CTMs) is presented. The main objective of the coupled system is to enable the IFS to simulate key chemical species without the necessity to invert the complex source and sink processes such as chemical reactions, emission and deposition. Thus satellite observations of atmospheric composition can be assimilated into the IFS using its 4D-VAR algorithm. In the coupled system, the IFS simulates only the transport of chemical species. The coupled CTM provides to the IFS the concentration tendencies due to emission injection, deposition and chemical conversion. The CTMs maintain their own transport schemes and are fed with meteorological data at hourly resolution from the IFS. The CTM used in the coupled system can be either MOZART-3, TM5 or MOCAGE. The coupling is achieved via the special-purpose software OASIS4. The scientific integrity of the coupled system is proven by analysing the difference between stand-alone CTM simulations and the tracer fields in the coupled IFS. The IFS concentration fields match the CTM fields for about 48 h with the biggest differences occurring in the planetary boundary layer (PBL). The coupled system is a good test bed for process-oriented comparison of the coupled CTM. As an example, the vertical structure of chemical conversion and emission injection is studied for a ten day period over Central Europe for the three CTMs.

[1]  Peter Bergamaschi,et al.  European Geosciences Union Atmospheric Chemistry and Physics , 2005 .

[2]  H. Ritzdorf,et al.  OASIS4 – a coupling software for next generation earth system modelling , 2009 .

[3]  Yang Zhang,et al.  Online-coupled meteorology and chemistry models: history, current status, and outlook , 2008 .

[4]  G. Russell,et al.  A New Finite-Differencing Scheme for the Tracer Transport Equation , 1981 .

[5]  H. Kelder,et al.  An ozone climatology based on ozonesonde and satellite measurements , 1998 .

[6]  J. Flemming,et al.  Testing model accuracy measures according to the EU directives : examples using the chemical transport model REM-CALGRID , 2007 .

[7]  J. Randerson,et al.  Global Fire Emissions Database, Version 4.1 (GFEDv4) , 2006 .

[8]  Shian‐Jiann Lin,et al.  Multidimensional Flux-Form Semi-Lagrangian Transport Schemes , 1996 .

[9]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[10]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[11]  F. Chevallier,et al.  Four-dimensional data assimilation of atmospheric CO2 using AIRS observations , 2009 .

[12]  Johannes W. Kaiser,et al.  Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System : Forward modeling , 2009 .

[13]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[14]  S. Henne,et al.  Region of influence of 13 remote European measurement sites based on modeled carbon monoxide mixing ratios , 2009 .

[15]  V. L. Orkin,et al.  Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation No. 14 (JPL Publication 02-25) , 2003 .

[16]  N. McFarlane,et al.  Sensitivity of Climate Simulations to the Parameterization of Cumulus Convection in the Canadian Climate Centre General Circulation Model , 1995, Data, Models and Analysis.

[17]  P. Rasch,et al.  Two-dimensional semi-Lagrangian trans-port with shape-preserving interpolation , 1989 .

[18]  T. Diehl,et al.  Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model , 2007 .

[19]  G D Riley,et al.  The Met Office FLUME Project Design Documents (2002-2006) , 2002 .

[20]  D. Cariolle,et al.  Vers une meilleure représentation de la distribution et de la variabilité de l'ozone atmosphérique par l'assimilation des données satellitaires , 2005 .

[21]  J. C. McConnell,et al.  GEM-AQ, an on-line global multiscale chemical weather modelling system: model description and evaluation of gas phase chemistry processes , 2007 .

[22]  J. Hack Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2) , 1994 .

[23]  Albert A. M. Holtslag,et al.  Local Versus Nonlocal Boundary-Layer Diffusion in a Global Climate Model , 1993 .

[24]  Albert A. M. Holtslag,et al.  Eddy Diffusivity and Countergradient Transport in the Convective Atmospheric Boundary Layer , 1991 .

[25]  GEMS data assimilation system for chemically reactive gases , 2009 .

[26]  G. Brasseur,et al.  Chemistry of the 1991–1992 stratospheric winter: Three‐dimensional model simulations , 1994 .

[27]  D. Jacob,et al.  Transport and scavenging of soluble gases in a deep , 2000 .

[28]  M. Schultz,et al.  Trace gas and aerosol interactions in the fully coupled model of aerosol-chemistry-climate ECHAM5-HAMMOZ: 1. Model description and insights from the spring 2001 TRACE-P experiment , 2008 .

[29]  H. Singh Future directions: Satellite observations of tropospheric chemistry☆ , 2000 .

[30]  松山 洋 「Statistical Methods in the Atmospheric Sciences(2nd edition), International Geophysics Series 91」, Daniel S. Wilks著, Academic Press, 2005年11月, 648頁, $94.95, ISBN978-0-12-751966-1(本だな) , 2010 .

[31]  Sander Houweling,et al.  The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry , 1998 .

[32]  Daniel Cariolle,et al.  Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model , 1986 .

[33]  Georg A. Grell,et al.  Fully coupled “online” chemistry within the WRF model , 2005 .

[34]  E. Bazile,et al.  A mass‐flux convection scheme for regional and global models , 2001 .

[35]  D. Edwards,et al.  Evaluation of the MOCAGE chemistry transport model during the ICARTT/ITOP experiment , 2007 .

[36]  Elías Hólm,et al.  Ozone assimilation in the ERA‐40 reanalysis project , 2004 .

[37]  A. Hollingsworth,et al.  Toward a Monitoring and Forecasting System For Atmospheric Composition: The GEMS Project , 2008 .

[38]  Stefan Tilmes,et al.  Investigation on the spatial scales of the variability in measured near‐ground ozone mixing ratios , 1998 .

[39]  A. Segers,et al.  Global model simulations of air pollution during the 2003 European heat wave , 2009 .

[40]  Adrian Simmons,et al.  Use of Reduced Gaussian Grids in Spectral Models , 1991 .

[41]  Mijeong Park,et al.  Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART) , 2009 .

[42]  B. Luo,et al.  vapour pressures of H2SO4/HNO3/HCl/HBr/H2O solutions to low stratospheric temperatures , 1995 .

[43]  B. Josse,et al.  Radon global simulations with the multiscale chemistry and transport model MOCAGE , 2004 .

[44]  A. J. Simmons,et al.  Aerosol analysis and forecast in the ECMWF Integrated Forecast System : Data assimilation , 2008 .

[45]  W. Lahoz,et al.  Evaluation of linear ozone photochemistry parametrizations in a stratosphere-troposphere data assimilation system , 2006 .