Two Approaches for Guaranteed State Estimation of Nonlinear Continuous-Time Models

This paper deals with the estimation of the state vector of a nonlinear continuous-time state-space model, such as those frequently encountered in the context of knowledge-based modeling. Unknown and possibly time-varying parameters may be included in an extended state vector to deal with the simultaneous estimation of state and parameters. Observations depending on the (possibly extended) state are assumed to take place at discrete measurement times. Given bounds on the size of the additive measurement errors, guaranteed estimation should then provide bounds on the possible values of the state at any given time. Two recently developed approaches are presented and their performance is compared on a simple test case.

[1]  M. Berz,et al.  Efficient high-order methods for ODEs and DAEs , 2000 .

[2]  Eric Walter,et al.  Guaranteed nonlinear parameter estimation in knowledge-based models , 2007 .

[3]  Eric Walter,et al.  Interval analysis for guaranteed non-linear parameter and state estimation , 2005 .

[4]  Nacim Meslem,et al.  A Guaranteed State Bounding Estimation for Uncertain Non Linear Continuous Time Systems using Hybrid Automata , 2008, ICINCO-SPSMC.

[5]  Olivier Bernard,et al.  Near optimal interval observers bundle for uncertain bioreactors , 2007, 2007 European Control Conference (ECC).

[6]  Ali Zolghadri,et al.  Interval observer design for consistency checks of nonlinear continuous-time systems , 2010, Autom..

[7]  E. Hofer,et al.  VALENCIA-IVP: A Comparison with Other Initial Value Problem Solvers , 2006, 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006).

[8]  Eric Walter,et al.  Guaranteed estimation of the parameters of nonlinear continuous‐time models: Contributions of interval analysis , 2011 .

[9]  Eric Walter,et al.  GUARANTEED NONLINEAR STATE ESTIMATION FOR CONTINUOUS-TIME DYNAMICAL MODELS FROM DISCRETE-TIME MEASUREMENTS , 2006 .

[10]  Y. Candau,et al.  Set membership state and parameter estimation for systems described by nonlinear differential equations , 2004, Autom..

[11]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[12]  M. Stadtherr,et al.  Validated solution of ODEs with parametric uncertainties , 2006 .

[13]  J. Gouzé,et al.  Interval observers for uncertain biological systems , 2000 .

[14]  Marco Kletting Verified methods for state and parameter estimators for nonlinear uncertain systems with applications in engineering , 2009 .

[15]  Ulrich W. Kulisch,et al.  Perspectives on Enclosure Methods , 2001 .

[16]  Luc Jaulin,et al.  Nonlinear bounded-error state estimation of continuous-time systems , 2002, Autom..

[17]  Martin Berz,et al.  SUPPRESSION OF THE WRAPPING EFFECT BY TAYLOR MODEL- BASED VERIFIED INTEGRATORS: LONG-TERM STABILIZATION BY PRECONDITIONING , 2011 .

[18]  Nedialko S. Nedialkov,et al.  A New Perspective on the Wrapping Effect in Interval Methods for Initial Value Problems for Ordinary Differential Equations , 2001, Perspectives on Enclosure Methods.

[19]  Andreas Rauh,et al.  Extensions of ValEncIA‐IVP for reduction of overestimation, for simulation of differential algebraic systems, and for dynamical optimization , 2007 .

[20]  Eric Walter,et al.  Set inversion via interval analysis for nonlinear bounded-error estimation , 1993, Autom..

[21]  F. Chernousko State Estimation for Dynamic Systems , 1993 .

[22]  Wolfgang Kuehn,et al.  Rigorously computed orbits of dynamical systems without the wrapping effect , 1998, Computing.

[23]  E. Walter,et al.  Interval Analysis for Guaranteed Nonlinear Parameter Estimation , 2003 .

[24]  Nacim Meslem,et al.  Interval Observers for Uncertain Nonlinear Systems. Application to bioreactors. , 2008 .

[25]  Max b. Müller Über das Fundamentaltheorem in der Theorie der gewöhnlichen Differentialgleichungen , 1927 .

[26]  Martin Berz,et al.  Verified Integration of ODEs and Flows Using Differential Algebraic Methods on High-Order Taylor Models , 1998, Reliab. Comput..

[27]  A. Kurzhanski,et al.  Ellipsoidal Calculus for Estimation and Control , 1996 .