Erosion of X Chromosome Inactivation in Human Pluripotent Cells Initiates with XACT Coating and Depends on a Specific Heterochromatin Landscape.

[1]  N. Friedman,et al.  Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells , 2014, Nature.

[2]  Guillaume Filion,et al.  jahmm: A tool for discretizing multiple ChIP seq profiles , 2014, 1405.5467.

[3]  V. Tabar,et al.  Pluripotent stem cells in regenerative medicine: challenges and recent progress , 2014, Nature Reviews Genetics.

[4]  I. Amit,et al.  Derivation of novel human ground state naive pluripotent stem cells , 2013, Nature.

[5]  Shinya Yamanaka,et al.  Induced pluripotent stem cells in medicine and biology , 2013, Development.

[6]  H. Kimura,et al.  Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway , 2013, Nature Structural &Molecular Biology.

[7]  Danwei Huangfu,et al.  Human pluripotent stem cells: an emerging model in developmental biology , 2013, Development.

[8]  Alissa M. Resch,et al.  XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells , 2013, Nature Genetics.

[9]  M. Sur,et al.  Molecular signatures of human induced pluripotent stem cells highlight sex differences and cancer genes. , 2012, Cell stem cell.

[10]  Julie V. Harness,et al.  Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. , 2012, Cell stem cell.

[11]  K. Eggan,et al.  Erosion of dosage compensation impacts human iPSC disease modeling. , 2012, Cell stem cell.

[12]  Joseph B Hiatt,et al.  Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster , 2011, Nature Genetics.

[13]  S. Chouaib,et al.  Human mesenchymal stem cells derived from induced pluripotent stem cells down-regulate NK-cell cytolytic machinery. , 2011, Blood.

[14]  A. Wutz Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation , 2011, Nature Reviews Genetics.

[15]  J. Gribnau,et al.  Xist regulation and function eXplored , 2011, Human Genetics.

[16]  E. Heard,et al.  Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development , 2011, Nature.

[17]  Nicola Festuccia,et al.  Molecular coupling of Tsix regulation and pluripotency , 2010, Nature.

[18]  C. Vallot,et al.  Partial reversal of the methylation pattern of the X-linked gene HUMARA during hematopoietic differentiation of human embryonic stem cells. , 2010, Journal of molecular cell biology.

[19]  Richard A Young,et al.  Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. , 2010, Cell stem cell.

[20]  Lee E. Edsall,et al.  Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. , 2010, Cell stem cell.

[21]  Jennifer A. Erwin,et al.  Derivation of Pre-X Inactivation Human Embryonic Stem Cells under Physiological Oxygen Concentrations , 2010, Cell.

[22]  Timothy E. Reddy,et al.  Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. , 2009, Genome research.

[23]  S. Kozubek,et al.  Epigenome and chromatin structure in human embryonic stem cells undergoing differentiation , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[24]  J. Lawrence,et al.  X‐inactivation reveals epigenetic anomalies in most hESC but identifies sublines that initiate as expected , 2008, Journal of cellular physiology.

[25]  R. Rowntree,et al.  X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells , 2008, Proceedings of the National Academy of Sciences.

[26]  M. Pellegrini,et al.  X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations , 2008, Proceedings of the National Academy of Sciences.

[27]  A. Vincent-Salomon,et al.  X inactive-specific transcript RNA coating and genetic instability of the X chromosome in BRCA1 breast tumors. , 2007, Cancer research.

[28]  Ben Abbas,et al.  Human heterochromatin proteins form large domains containing KRAB-ZNF genes. , 2006, Genome research.

[29]  Shridar Ganesan,et al.  X chromosomal abnormalities in basal-like human breast cancer. , 2006, Cancer cell.

[30]  H. Willard,et al.  X-inactivation profile reveals extensive variability in X-linked gene expression in females , 2005, Nature.

[31]  Huntington F Willard,et al.  Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  C. Borg,et al.  X-Chromosome Genetics and Human Cancer , 2004, Nature Reviews Cancer.

[33]  C. Allis,et al.  Methylation of Histone H3 at Lys-9 Is an Early Mark on the X Chromosome during X Inactivation , 2001, Cell.

[34]  R. Jaenisch,et al.  A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. , 2000, Molecular cell.

[35]  R. Jaenisch,et al.  Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation , 1999, Nature Genetics.

[36]  Carolyn J. Brown,et al.  The human X-inactivation centre is not required for maintenance of X-chromosome inactivation , 1994, Nature.

[37]  A. C. Chinault,et al.  Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes , 2002, Nature Genetics.