Computing the hyperbolicity constant of a cubic graph

In this paper we obtain information about the hyperbolicity constant of cubic graphs. They are a very interesting class of graphs with many applications; furthermore, they are also very important in the study of Gromov hyperbolicity, since for any graph G with bounded maximum degree there exists a cubic graph G* such that G is hyperbolic if and only if G* is hyperbolic. We find some characterizations for the cubic graphs which have small hyperbolicity constants, i.e. the graphs which are like trees (in the Gromov sense). Besides, we obtain bounds for the hyperbolicity constant of the complement graph of a cubic graph; our main result of this kind says that for any finite cubic graph G which is not isomorphic either to K4 or to K3, 3, the inequalities 5k/4≤δ (Ḡ)≤3k/2 hold, if k is the length of every edge in G.

[1]  Yaokun Wu,et al.  Hyperbolicity and Chordality of a Graph , 2011, Electron. J. Comb..

[2]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[3]  Jose Maria Sigarreta,et al.  On the hyperbolicity constant in graphs , 2011, Discret. Math..

[4]  P. Buser Cubic graphs and the first eigenvalue of a Riemann surface , 1978 .

[5]  Edmond A. Jonckheere,et al.  Upper bound on scaled Gromov-hyperbolic delta , 2007, Appl. Math. Comput..

[6]  Ruth Charney,et al.  Artin groups of finite type are biautomatic , 1992 .

[7]  Jacobus H. Koolen,et al.  Hyperbolic Bridged Graphs , 2002, Eur. J. Comb..

[8]  A. O. Houcine On hyperbolic groups , 2006 .

[9]  Jose Maria Sigarreta,et al.  Distortion of the Hyperbolicity Constant of a Graph , 2012, Electron. J. Comb..

[10]  Jose Maria Sigarreta,et al.  Hyperbolicity and complement of graphs , 2011, Appl. Math. Lett..

[11]  José M. Rodríguez,et al.  Gromov hyperbolic cubic graphs , 2012 .

[12]  Jose Maria Sigarreta,et al.  Small values of the hyperbolicity constant in graphs , 2016, Discret. Math..

[13]  Frank Harary,et al.  Graph Theory , 2016 .

[14]  José M. Rodríguez,et al.  Gromov hyperbolicity in Cartesian product graphs , 2010 .

[15]  Y. Cho,et al.  Discrete Groups , 1994 .

[16]  Bojan Mohar,et al.  An analogue of the Descartes-Euler formula for infinite graphs and Higuchi’s conjecture , 2007 .

[17]  Edmond A. Jonckheere,et al.  Scaled Gromov hyperbolic graphs , 2008, J. Graph Theory.

[18]  H. Short,et al.  Notes on word hyperbolic groups , 1991 .

[19]  Yilun Shang Non-Hyperbolicity of Random Graphs with Given Expected Degrees , 2013 .

[20]  Philip L. Bowers Negatively curved graph and planar metrics with applications to type. , 1998 .

[21]  J. Koolen,et al.  On the Hyperbolicity of Chordal Graphs , 2001 .

[22]  Amin Vahdat,et al.  Hyperbolic Geometry of Complex Networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Yilun Shang,et al.  Lack of Gromov-hyperbolicity in small-world networks , 2012 .

[24]  Jose Maria Sigarreta,et al.  Gromov hyperbolic graphs , 2013, Discret. Math..

[25]  GROMOV HYPERBOLIC TESSELLATION GRAPHS , 2012 .

[26]  Olivier Ly,et al.  Distance Labeling in Hyperbolic Graphs , 2005, ISAAC.

[27]  RRDE experiments with independent potential scans at the ring and disk electrodes - 3D map of intermediates and products of electrode processes , 2012 .

[28]  A. Portilla,et al.  A characterization of Gromov hyperbolicity of surfaces with variable negative curvature , 2009 .

[29]  Shing-Tung Yau,et al.  Graph homotopy and Graham homotopy , 2001, Discret. Math..

[30]  E. Jonckheere,et al.  Geometry of network security , 2004, Proceedings of the 2004 American Control Conference.

[31]  H. Whitney Non-Separable and Planar Graphs. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[32]  David Eppstein,et al.  Squarepants in a tree: sum of subtree clustering and hyperbolic pants decomposition , 2006, SODA '07.

[33]  Yuval Shavitt,et al.  On the curvature of the Internet and its usage for overlay construction and distance estimation , 2004, IEEE INFOCOM 2004.

[34]  Jose Maria Sigarreta,et al.  Hyperbolicity and parameters of graphs , 2011, Ars Comb..

[35]  José M. Rodríguez,et al.  Gromov hyperbolicity through decomposition of metrics spaces II , 2004 .

[36]  E. Tourís Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces , 2011 .

[37]  M. Habib,et al.  Notes on diameters , centers , and approximating trees of δ-hyperbolic geodesic spaces and graphs , 2008 .

[38]  Victor Chepoi,et al.  Packing and Covering delta -Hyperbolic Spaces by Balls , 2007, APPROX-RANDOM.

[39]  JOSÉ M RODRÍGUEZ,et al.  Bounds on Gromov hyperbolicity constant in graphs , 2012 .

[40]  E. Jonckheere Contrôle du trafic sur les réseaux à géométrie hyperbolique : Vers une théorie géométrique de la sécurité de l'acheminement de l'information , 2003 .

[41]  José M. Rodríguez,et al.  Gromov Hyperbolicity in Strong Product Graphs , 2013, Electron. J. Comb..

[42]  Jose Maria Sigarreta,et al.  Computing the hyperbolicity constant , 2011, Comput. Math. Appl..

[43]  J. M. Sigarreta,et al.  GROMOV HYPERBOLICITY OF LINE GRAPHS , 2011 .

[44]  Chengpeng Zhang,et al.  Chordality and hyperbolicity of a graph , 2009, 0910.3544.

[45]  J. M. Sigarreta,et al.  GROMOV HYPERBOLIC DIRECTED GRAPHS , 2011 .

[46]  V. Chepoi,et al.  Packing and covering δ-hyperbolic spaces by balls ? , 2007 .

[47]  Robert Krauthgamer,et al.  Algorithms on negatively curved spaces , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[48]  J. M. Sigarreta Hyperbolicity in median graphs , 2013 .

[49]  Iraj Saniee,et al.  Large-scale curvature of networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Characterizing hyperbolic spaces and real trees , 2008, 0810.1526.

[51]  José M. Rodríguez,et al.  Gromov hyperbolicity through decomposition of metric spaces , 2004 .

[52]  Andrew V. Sills,et al.  Hybrid Proofs of the q-Binomial Theorem and Other Identities , 2011, Electron. J. Comb..