Respiratory motion artifact suppression in diffusion-weighted MR imaging of the spine

Abstract. Diffusion-weighted spin-echo imaging of the spine has been successfully implemented for differentiation of benign fracture edema and tumor infiltration of the vertebral body. Nevertheless, this technique still suffers from insufficient image quality in numerous patients due to motion artifacts. The aim of this study was to investigate the impact of variable respiratory motion artifact suppression techniques on image quality in diffusion-weighted spin-echo imaging of the spine. In addition to phase-encoding reordering, a newly implemented right hemi-diaphragmaitc navigator for respiratory gating was used. Subjective and objective image quality parameters were compared. Respiratory motion artifact suppression has a major impact on image quality in diffusion-weighted imaging of the spine. Phase-encoding reordering does not enhance image quality while right hemi-diaphragmatic respiratory navigator gating significantly improves image quality at the cost of data acquisition time. Navigator gating should be used if standard spin-echo diffusion-weighted imaging demonstrates insufficient image quality.

[1]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[2]  A. G. Collins,et al.  Respiratory ordered phase encoding (ROPE): a method for reducing respiratory motion artefacts in MR imaging. , 1985, Journal of computer assisted tomography.

[3]  E M Haacke,et al.  Reducing motion artifacts in two-dimensional Fourier transform imaging. , 1986, Magnetic resonance imaging.

[4]  D. Mitchell,et al.  Motion artifact reduction in MR imaging of the abdomen: gradient moment nulling versus respiratory-sorted phase encoding. , 1988, Radiology.

[5]  Rachid Deriche,et al.  Fast algorithms for low-level vision , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[6]  W T Yuh,et al.  Vertebral compression fractures: distinction between benign and malignant causes with MR imaging. , 1989, Radiology.

[7]  J. Felmlee,et al.  Adaptive technique for high-definition MR imaging of moving structures. , 1989, Radiology.

[8]  R. Ordidge,et al.  Correction of motional artifacts in diffusion-weighted MR images using navigator echoes. , 1994, Magnetic resonance imaging.

[9]  J C Gore,et al.  Analysis and correction of motion artifacts in diffusion weighted imaging , 1994, Magnetic resonance in medicine.

[10]  A. D. de Crespigny,et al.  Navigated Diffusion Imaging of Normal and Ischemic Human Brain , 1995, Magnetic resonance in medicine.

[11]  R. Pettigrew,et al.  Two-dimensional coronary MR angiography without breath holding. , 1996, Radiology.

[12]  M. McConnell,et al.  Prospective navigator correction of image position for coronary MR angiography. , 1997, Radiology.

[13]  M. McConnell,et al.  Comparison of respiratory suppression methods and navigator locations for MR coronary angiography. , 1997, AJR. American journal of roentgenology.

[14]  D. Le Bihan Differentiation of benign versus pathologic compression fractures with diffusion-weighted MR imaging: a closer step toward the "holy grail" of tissue characterization? , 1998, Radiology.

[15]  M Deimling,et al.  Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. , 1998, Radiology.

[16]  D. Bihan,et al.  Differentiation of benign versus pathologic compression fractures with diffusion-weighted MR imaging: a closer step toward the "holy grail" of tissue characterization? , 1998 .

[17]  H Jara,et al.  Motion artifact control in body MR imaging. , 1999, Magnetic resonance imaging clinics of North America.

[18]  E. Hsu,et al.  Diffusion tensor microscopy of the intervertebral disc anulus fibrosus , 1999, Magnetic resonance in medicine.

[19]  René M. Botnar,et al.  Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. , 1999, Radiology.

[20]  René M. Botnar,et al.  Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. , 1999, Circulation.

[21]  P Wach,et al.  Diffusion-weighted imaging with navigated interleaved echo-planar imaging and a conventional gradient system. , 1999, Radiology.

[22]  O. Tervonen,et al.  Apparent diffusion coefficient in thoracolumbar intervertebral discs of healthy young volunteers , 2000, Journal of magnetic resonance imaging : JMRI.

[23]  L. Schwartz,et al.  Bone marrow segmentation in leukemia using diffusion and T 2 weighted echo planar magnetic resonance imaging , 2000, NMR in biomedicine.

[24]  G. Adam,et al.  Differenzierung seröser und putrider Flüssigkeiten in vitro und in vivo mit diffusionsgewichteter MRT , 2001 .

[25]  [Differentiation of serous and purulent fluids in vitro and in vivo by means of diffusion-weighted MRI]. , 2001, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[26]  G Adam,et al.  Diffusion-weighted MR imaging for differentiation of benign fracture edema and tumor infiltration of the vertebral body. , 2001, AJR. American journal of roentgenology.

[27]  芳映 野々村 Relationship between bone marrow cellularity and apparent diffusion coefficient , 2001 .

[28]  René M. Botnar,et al.  Renal arteries: navigator-gated balanced fast field-echo projection MR angiography with aortic spin labeling: initial experience. , 2002, Radiology.