Comprehensive Insights into the Thermal Stability, Biodegradability, and Combustion Chemistry of Pyrrolidinium-Based Ionic Liquids.

The use of ionic liquids (ILs) as advanced electrolyte components in electrochemical energy-storage devices is one of the most appealing and emerging options. However, although ILs are hailed as safer and eco-friendly electrolytes, to overcome the limitations imposed by the highly volatile/combustible carbonate-based electrolytes, full-scale and precise appraisal of their overall safety levels under abuse conditions still needs to be fully addressed. With the aim of providing this level of information on the thermal and chemical stabilities, as well as actual fire hazards, herein, a detailed investigation of the short- and long-term thermal stabilities, biodegradability, and combustion behavior of various pyrrolidinium-based ILs, with different alkyl chain lengths, counteranions, and cations, as well as the effect of doping with lithium salts, is described.

[1]  J. Hassoun,et al.  Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes , 2016 .

[2]  Di Bao,et al.  A Biodegradable Polydopamine-Derived Electrode Material for High-Capacity and Long-Life Lithium-Ion and Sodium-Ion Batteries. , 2016, Angewandte Chemie.

[3]  Guy Marlair,et al.  Scenario-based prediction of Li-ion batteries fire-induced toxicity , 2016 .

[4]  G. G. Eshetu,et al.  Ionic liquids as tailored media for the synthesis and processing of energy conversion materials , 2016 .

[5]  N. Gathergood,et al.  Biodegradation of ionic liquids--a critical review. , 2015, Chemical Society reviews.

[6]  Xin-bo Zhang,et al.  Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries , 2015 .

[7]  S. Aparicio,et al.  Systematic Study on the Viscosity of Ionic Liquids: Measurement and Prediction , 2015 .

[8]  Luís M. N. B. F. Santos,et al.  Comprehensive Study on the Impact of the Cation Alkyl Side Chain Length on the Solubility of Water in Ionic Liquids. , 2015, Journal of molecular liquids.

[9]  P. Johansson,et al.  Ionic liquid based lithium battery electrolytes: fundamental benefits of utilising both TFSI and FSI anions? , 2015, Physical chemistry chemical physics : PCCP.

[10]  Stefano Passerini,et al.  Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. , 2015, ChemSusChem.

[11]  C. Samorì,et al.  Pyrrolidinium-based Ionic Liquids: Aquatic Ecotoxicity, Biodegradability, and Algal Subinhibitory Stimulation , 2015 .

[12]  Xin-bo Zhang,et al.  Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance , 2015 .

[13]  Xin-bo Zhang,et al.  Pure Single‐Crystalline Na1.1V3O7.9 Nanobelts as Superior Cathode Materials for Rechargeable Sodium‐Ion Batteries , 2015, Advanced science.

[14]  Guy Marlair,et al.  Coupling of OECD standardized test and immunomarkers to select the most environmentally benign ionic liquids option--towards an innovative "safety by design" approach. , 2015, Journal of hazardous materials.

[15]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[16]  G. G. Eshetu,et al.  Fire behavior of carbonates-based electrolytes used in Li-ion rechargeable batteries with a focus on the role of the LiPF6 and LiFSI salts , 2014 .

[17]  Stefano Passerini,et al.  Aus ionischen Flüssigkeiten hergestellte Materialien für die Energiespeicherung , 2014 .

[18]  Bruno Scrosati,et al.  Energy storage materials synthesized from ionic liquids. , 2014, Angewandte Chemie.

[19]  Faiz Ullah Shah,et al.  The effect of the cation alkyl chain length on density and diffusion in dialkylpyrrolidinium bis(mandelato)borate ionic liquids. , 2014, Physical chemistry chemical physics : PCCP.

[20]  S. Passerini,et al.  Pyrrolidinium-based ionic liquids doped with lithium salts: how does Li(+) coordination affect its diffusivity? , 2014, The journal of physical chemistry. B.

[21]  Dan Xu,et al.  Dendritic Ni‐P‐Coated Melamine Foam for a Lightweight, Low‐Cost, and Amphipathic Three‐Dimensional Current Collector for Binder‐Free Electrodes , 2014, Advanced materials.

[22]  Tiancheng Mu,et al.  Comprehensive Investigation on the Thermal Stability of 66 Ionic Liquids by Thermogravimetric Analysis , 2014 .

[23]  Xin-bo Zhang,et al.  Tailored Aromatic Carbonyl Derivative Polyimides for High‐Power and Long‐Cycle Sodium‐Organic Batteries , 2014 .

[24]  Shuang Yuan,et al.  Engraving Copper Foil to Give Large‐Scale Binder‐Free Porous CuO Arrays for a High‐Performance Sodium‐Ion Battery Anode , 2014, Advanced materials.

[25]  Chul-Woong Cho,et al.  Biodegradability of 27 pyrrolidinium, morpholinium, piperidinium, imidazolium and pyridinium ionic liquid cations under aerobic conditions , 2014 .

[26]  S. Passerini,et al.  Unexpected performance of layered sodium-ion cathode material in ionic liquid-based electrolyte , 2014 .

[27]  G. Marlair,et al.  Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage. , 2014, Physical chemistry chemical physics : PCCP.

[28]  P. Simon,et al.  Energy applications of ionic liquids , 2014 .

[29]  T. Welton,et al.  Thermal decomposition of carboxylate ionic liquids: trends and mechanisms. , 2013, Physical chemistry chemical physics : PCCP.

[30]  Xin-bo Zhang,et al.  Homogeneous CoO on Graphene for Binder‐Free and Ultralong‐Life Lithium Ion Batteries , 2013 .

[31]  M. Courty,et al.  Syntheses and characterisation of hydrophobic ionic liquids containing trialkyl(2-ethoxy-2-oxoethyl)ammonium or N-(1-methylpyrrolidyl-2-ethoxy-2-oxoethyl)ammonium cations , 2013 .

[32]  G. G. Eshetu,et al.  LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: Comparing thermal stabilities and identification of specific SEI-reinforcing additives , 2013 .

[33]  C. Stevens,et al.  Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. , 2013, Chemical Society reviews.

[34]  Guy Marlair,et al.  In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[35]  G. Marlair,et al.  An innovative experimental approach aiming to understand and quantify the actual fire hazards of ionic liquids , 2013 .

[36]  M. Winter,et al.  Fluorosulfonyl-(trifluoromethanesulfonyl)imide ionic liquids with enhanced asymmetry. , 2013, Physical chemistry chemical physics : PCCP.

[37]  S. Stolte,et al.  Ionic liquids as lubricants or lubrication additives: an ecotoxicity and biodegradability assessment. , 2012, Chemosphere.

[38]  Peter G. Bruce,et al.  Lithiumbatterien und elektrische Doppelschichtkondensatoren: aktuelle Herausforderungen , 2012 .

[39]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[40]  Xunyu Lu,et al.  Electrochemistry of room temperature protic ionic liquids: a critical assessment for use as electrolytes in electrochemical applications. , 2012, The journal of physical chemistry. B.

[41]  Shih-Kai Huang,et al.  Relationship between flash point of ionic liquids and their thermal decomposition , 2012 .

[42]  W. Henderson,et al.  Tuning Binary Ionic Liquid Mixtures: Linking Alkyl Chain Length to Phase Behavior and Ionic Conductivity , 2012 .

[43]  Guillaume Fayet,et al.  Evaluation of heats of combustion of ionic liquids through use of existing and purpose-built models , 2012 .

[44]  M. Morcrette,et al.  Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry , 2012 .

[45]  S. Passerini,et al.  The role of the cation aliphatic side chain length in piperidinium bis(trifluoromethansulfonyl)imide ionic liquids , 2011 .

[46]  Zonghai Chen,et al.  Multi-scale study of thermal stability of lithiated graphite , 2011 .

[47]  S. Stolte,et al.  The Biodegradation of Ionic Liquids : the View from a Chemical Structure Perspective , 2011 .

[48]  R. Torresi,et al.  Ether-bond-containing ionic liquids and the relevance of the ether bond position to transport properties. , 2010, The journal of physical chemistry. B.

[49]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[50]  J. Dupont,et al.  Preparation, cation-anion interactions and physicochemical properties of ether-functionalized imidazolium ionic liquids , 2008 .

[51]  C. Peters,et al.  Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids , 2007 .

[52]  Christian Delvosalle,et al.  Fire calorimetry relying on the use of the fire propagation apparatus. Part I: early learning from use in Europe , 2006 .

[53]  H. Matsumoto,et al.  Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. , 2006, Chemistry.

[54]  Christian Delvosalle,et al.  Fire calorimetry relying on the use of the fire propagation apparatus. Part II: burning characteristics of selected chemical substances under fuel rich conditions , 2006 .

[55]  M. Watanabe,et al.  Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. , 2005, The journal of physical chemistry. B.

[56]  H. Matsumoto,et al.  Low-melting, low-viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. , 2005, Chemistry.

[57]  H. Matsumoto,et al.  Low-melting, low-viscous, hydrophobic ionic liquids: 1-alkyl(alkyl ether)-3-methylimidazolium perfluoroalkyltrifluoroborate. , 2004, Chemistry.

[58]  Marek Kosmulski,et al.  Thermal stability of low temperature ionic liquids revisited , 2004 .

[59]  A. Jensen,et al.  Fuel nitrogen conversion in solid fuel fired systems , 2003 .

[60]  D. Macfarlane,et al.  Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion , 2002 .

[61]  S. Channiwala,et al.  A UNIFIED CORRELATION FOR ESTIMATING HHV OF SOLID, LIQUID AND GASEOUS FUELS , 2002 .

[62]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[63]  Robin D. Rogers,et al.  Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation , 2001 .

[64]  H. Ngo,et al.  Thermal properties of imidazolium ionic liquids , 2000 .

[65]  Christian Delvosalle,et al.  Soot Generation In Fires: An Important Parameter For Accurate Calculation Of Heat Release , 2000 .

[66]  J. Goldman,et al.  Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications , 1999 .

[67]  P. J. Fardell,et al.  Conversion of fuels containing nitrogen to oxides of nitrogen in hydrogen and methane flames , 1978 .

[68]  A. Tewarson,et al.  Flammability of plastics—I. Burning intensity , 1976 .

[69]  W. Deng,et al.  XV. The relation of oxygen to the heat of combustion of organic compounds , 1917 .