Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run.

We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2  M_{⊙}-1.0  M_{⊙} using data taken between September 12, 2015 and January 19, 2016. We find no viable gravitational wave candidates. Our null result constrains the coalescence rate of monochromatic (delta function) distributions of nonspinning (0.2  M_{⊙}, 0.2  M_{⊙}) ultracompact binaries to be less than 1.0×10^{6}  Gpc^{-3}  yr^{-1} and the coalescence rate of a similar distribution of (1.0  M_{⊙}, 1.0  M_{⊙}) ultracompact binaries to be less than 1.9×10^{4}  Gpc^{-3}  yr^{-1} (at 90% confidence). Neither black holes nor neutron stars are expected to form below ∼1  M_{⊙} through conventional stellar evolution, though it has been proposed that similarly low mass black holes could be formed primordially through density fluctuations in the early Universe and contribute to the dark matter density. The interpretation of our constraints in the primordial black hole dark matter paradigm is highly model dependent; however, under a particular primordial black hole binary formation scenario we constrain monochromatic primordial black hole populations of 0.2  M_{⊙} to be less than 33% of the total dark matter density and monochromatic populations of 1.0  M_{⊙} to be less than 5% of the dark matter density. The latter strengthens the presently placed bounds from microlensing surveys of massive compact halo objects (MACHOs) provided by the MACHO and EROS Collaborations.

J. K. Blackburn | B. A. Boom | H. N. Isa | M. Fejer | P. Couvares | J. Gair | S. Babak | S. Fairhurst | A. Heptonstall | E. Huerta | Z. Etienne | M. Fishbach | D. George | Zoheyr Doctor | D. Holz | R. Abbott | T. Abbott | F. Acernese | K. Ackley | R. Adhikari | V. Adya | C. Affeldt | M. Agathos | K. Agatsuma | N. Aggarwal | O. Aguiar | L. Aiello | A. Ain | P. Ajith | G. Allen | A. Allocca | M. Aloy | P. Altin | A. Ananyeva | W. Anderson | S. Angelova | S. Appert | M. Araya | J. Areeda | M. Arène | S. Ascenzi | G. Ashton | S. Aston | P. Astone | F. Aubin | P. Aufmuth | K. AultONeal | C. Austin | A. Ávila-Álvarez | P. Bacon | F. Badaracco | M. Bader | S. Bae | P. Baker | F. Baldaccini | G. Ballardin | S. Ballmer | S. Banagiri | J. Barayoga | S. Barclay | B. Barish | D. Barker | K. Barkett | S. Barnum | F. Barone | B. Barr | L. Barsotti | M. Barsuglia | D. Barta | J. Bartlett | I. Bartos | R. Bassiri | A. Basti | M. Bawaj | J. Bayley | M. Bazzan | B. Bécsy | M. Bejger | D. Beniwal | G. Bergmann | S. Bernuzzi | C. Berry | D. Bersanetti | A. Bertolini | J. Betzwieser | I. Bilenko | S. Bilgili | G. Billingsley | J. Birch | R. Birney | O. Birnholtz | S. Biscans | S. Biscoveanu | A. Bisht | M. Bitossi | C. Blair | R. Blair | S. Bloemen | N. Bode | Y. Boetzel | G. Bogaert | F. Bondu | E. Bonilla | R. Bonnand | P. Booker | R. Bork | V. Boschi | K. Bossie | V. Bossilkov | J. Bosveld | Y. Bouffanais | A. Bozzi | C. Bradaschia | A. Bramley | M. Branchesi | T. Briant | F. Brighenti | A. Brillet | P. Brockill | A. Brooks | D. Brown | S. Brunett | A. Buikema | A. Buonanno | D. Buskulic | R. Byer | M. Cabero | L. Cadonati | G. Cagnoli | C. Cahillane | T. Callister | E. Calloni | H. Cao | E. Capocasa | F. Carbognani | S. Caride | M. Carney | C. Casentini | S. Caudill | M. Cavaglià | R. Cavalieri | G. Cella | G. Cerretani | E. Cesarini | O. Chaibi | S. Chamberlin | M. Chan | S. Chao | P. Charlton | E. Chase | D. Chatterjee | B. Cheeseboro | X. Chen | Y. Chen | H. Chia | A. Chincarini | A. Chiummo | M. Cho | N. Christensen | Q. Chu | S. Chua | K. Chung | S. Chung | G. Ciani | A. Ciobanu | R. Ciolfi | F. Cipriano | F. Clara | P. Clearwater | F. Cleva | C. Cocchieri | E. Coccia | C. Collette | C. Collins | L. Cominsky | M. Constancio | L. Conti | S. Cooper | P. Corban | I. Cordero-Carrión | A. Corsi | S. Cortese | C. Costa | R. Cotesta | S. Coughlin | J. Coulon | S. Countryman | E. Cowan | M. Cowart | D. Coyne | R. Coyne | J. Creighton | T. Creighton | J. Cripe | S. Crowder | T. Cullen | L. Cunningham | E. Cuoco | G. Dálya | S. D’Antonio | K. Danzmann | A. Dasgupta | V. Dattilo | I. Dave | D. Davis | E. Daw | D. DeBra | M. Deenadayalan | J. Degallaix | N. Demos | T. Dent | J. Derby | R. DeSalvo | M. Díaz | B. Ding | A. Dmitriev | F. Donovan | S. Doravari | I. Dorrington | T. Downes | M. Drago | J. Driggers | Z. Du | P. Dupej | S. Dwyer | P. Easter | T. Edo | M. Edwards | A. Effler | P. Ehrens | J. Eichholz | S. Eikenberry | M. Eisenmann | R. Eisenstein | H. Estellés | D. Estevez | V. Fafone | H. Fair | S. Farinon | B. Farr | W. Farr | E. Fauchon-Jones | Marc Favata | M. Fays | C. Fee | J. Feicht | Á. Fernández-Galiana | I. Ferrante | F. Ferrini | F. Fidecaro | D. Fiorucci | R. Fisher | J. Fishner | M. Fitz-Axen | M. Fletcher | H. Fong | P. Forsyth | J. Fournier | S. Frasca | F. Frasconi | Z. Frei | A. Freise | P. Fritschel | P. Fulda | M. Fyffe | H. Gabbard | B. Gadre | S. Gaebel | L. Gammaitoni | M. Ganija | S. Gaonkar | C. García-Quirós | F. Garufi | B. Gateley | S. Gaudio | G. Gaur | V. Gayathri | A. Gennai | L. Gergely | V. Germain | S. Ghonge | A. Ghosh | B. Giacomazzo | A. Giazotto | K. Gill | L. Glover | E. Goetz | R. Goetz | B. Goncharov | G. González | M. Gorodetsky | S. Gossan | M. Gosselin | R. Gouaty | A. Grado | M. Granata | A. Grant | S. Gras | C. Gray | G. Greco | A. Green | R. Green | E. Gretarsson | H. Grote | S. Grunewald | G. Guidi | H. Gulati | A. Gupta | R. Gustafson | O. Halim | B. Hall | E. Hall | E. Hamilton | M. Hanke | C. Hanna | O. Hannuksela | J. Hanson | J. Harms | G. Harry | I. Harry | C. Haster | K. Haughian | J. Healy | M. Heintze | H. Heitmann | G. Hemming | M. Hendry | I. Heng | J. Hennig | S. Hild | T. Hinderer | D. Hoak | S. Hochheim | N. Holland | C. Horst | E. Howell | A. Hreibi | B. Hughey | M. Hulko | S. Husa | S. Huttner | T. Huynh--Dinh | A. Iess | C. Ingram | R. Inta | G. Intini | J. Isac | B. Iyer | K. Izumi | T. Jacqmin | S. Antier | K. Arun | I. Belahcene | B. Berger | M. Bizouard | J. Blackman | V. Brisson | F. Cavalier | D. Cohen | M. Davier | R. Essick | F. Feng | V. Frey | P. Gruning | D. Huet | T. Adams | P. Addesso | M. Ast | C. Aulbert | J. Batch | O. Bock | C. Buchanan | J. Calderón Bustillo | C. Capano | J. Casanueva Diaz | C. Cepeda | J. Chow | A. Colla | M. De Laurentis | W. Del Pozzo | T. Denker | V. Dergachev | R. De Rosa | L. Di Fiore | M. Di Giovanni | A. Di Lieto | I. Di Palma | V. Dolique | H. Eggenstein | H. Fehrmann | K. Giardina | X. Guo | K. Gushwa | M. Hart | E. Houston | N. Indik | B. Agarwal | C. Dreissigacker | D. V. Atallah | C. Beer | C. Billman | P. Canizares | T. Chmiel | A. J. Chua | C. Cirelli | B. Day | S. Forsyth | J. George | K. Arai | S. Anderson | E. Ferreira | V. Frolov | T. Etzel | E. Gustafson | J. Brau | P. Brady | T. Corbitt | C. F. Da Silva Costa | T. Di Girolamo | S. Di Pace | J. G. Gonzalez Castro | R. De Pietri | C. De Rossi | O. de Varona | J. Camp | T. Evans | J. Giaime | J. Hough | P. Groot | J. Clark | H. Hamilton | A. Amato | N. Arnaud | M. Boer | M. Brinkmann | M. Canepa | S. Danilishin | S. Dhurandhar | K. Dooley | R. Frey | P. Hopkins | K. Cannon | M. Bensch | F. Hernandez | Eric Genin | B. Abbott | A. Bell | H. Bulten | H. Cho | F. Di Renzo | A. García | J. Hanks | G. Gemme | A. Deutsch | J. Bero | H.-P. Cheng | J. A. Font | H. Chen | J. Cao | S. Ghosh | P. Hello | T. D. Canton | P. Cerdá-Durán | K. Corley | D. Hofman | M. Gupta | M. Coughlin | D. Coward | C. Graef | C. D. Booth | A. Cumming | T. Hardwick | A. Gopakumar | M. Evans | S. Bose | I. Fiori | B. Allen | M. Dovale álvarez | A. Ghosh | G. Hammond | K. Holt | D. Blair | C. Adams | A. Bohe | T. Bulik | E. Chassande-Mottin | P. Cohadon | N. Cornish | R. Flaminio | M. Haney | A. Heidmann | M. Isi | G. Giordano | R. Bhandare | C. Buy | A. Cirone | P. Covas | M. Heurs | S. Deléglise | X. Fan

[1]  R. Magee,et al.  Methods for the detection of gravitational waves from subsolar mass ultracompact binaries , 2018, Physical Review D.

[2]  P. Serpico,et al.  On the merger rate of primordial black holes: effects of nearest neighbours distribution and clustering , 2018, Journal of Cosmology and Astroparticle Physics.

[3]  V. Desjacques,et al.  Spatial clustering of primordial black holes , 2018, Physical Review D.

[4]  Yacine Ali-Haïmoud Correlation Function of High-Threshold Regions and Application to the Initial Small-Scale Clustering of Primordial Black Holes. , 2018, Physical review letters.

[5]  M. Tytgat,et al.  NonPrimordial Solar Mass Black Holes. , 2018, Physical review letters.

[6]  S. Shandera,et al.  Gravitational Waves from Binary Mergers of Subsolar Mass Dark Black Holes. , 2018, Physical review letters.

[7]  U. Seljak,et al.  Limits on Stellar-Mass Compact Objects as Dark Matter from Gravitational Lensing of Type Ia Supernovae. , 2017, Physical review letters.

[8]  M. Mclaughlin,et al.  Pulsar J1411+2551: A Low-mass Double Neutron Star System , 2017, 1711.09804.

[9]  B. A. Boom,et al.  GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence , 2017, 1711.05578.

[10]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[11]  Y. Wang,et al.  Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO’s first observing run , 2017, 1710.02185.

[12]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[13]  L. Verde,et al.  Primordial black holes as dark matter: converting constraints from monochromatic to extended mass distributions , 2017, 1709.07467.

[14]  Jhu,et al.  Merger rate of primordial black-hole binaries , 2017, 1709.06576.

[15]  A. Loeb,et al.  Maximum Redshift of Gravitational Wave Merger Events. , 2017, Physical review letters.

[16]  M. Raidal,et al.  Gravitational waves from primordial black hole mergers , 2017, 1707.01480.

[17]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[18]  B. A. Boom,et al.  Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO , 2017, 1704.04628.

[19]  A. Loeb,et al.  Dynamics of Dwarf Galaxies Disfavor Stellar-Mass Black Holes as Dark Matter. , 2017, Physical review letters.

[20]  B. A. Boom,et al.  Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run , 2016, 1612.02029.

[21]  M. Kamionkowski,et al.  Black hole mass function from gravitational wave measurements , 2016, 1611.01157.

[22]  T. Li,et al.  Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background. , 2016, Physical review letters.

[23]  A. Raccanelli Gravitational wave astronomy with radio galaxy surveys , 2016, 1609.09377.

[24]  I. Cholis On the gravitational wave background from black hole binaries after the first LIGO detections , 2016, 1609.03565.

[25]  V. Mandic,et al.  Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers. , 2016, Physical review letters.

[26]  M. Kamionkowski,et al.  Orbital eccentricities in primordial black hole binaries , 2016, 1606.07437.

[27]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[28]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[29]  Timothy D. Brandt CONSTRAINTS ON MACHO DARK MATTER FROM COMPACT STELLAR SYSTEMS IN ULTRA-FAINT DWARF GALAXIES , 2016, 1605.03665.

[30]  S. Bird,et al.  Determining the progenitors of merging black-hole binaries , 2016, 1605.01405.

[31]  Cody Messick,et al.  Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data , 2016, 1604.04324.

[32]  Takahiro Tanaka,et al.  Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. , 2016, Physical review letters.

[33]  J. Garc'ia-Bellido,et al.  The clustering of massive Primordial Black Holes as Dark Matter: measuring their mass distribution with Advanced LIGO , 2016, 1603.05234.

[34]  A. Riess,et al.  Did LIGO Detect Dark Matter? , 2016, Physical review letters.

[35]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[36]  S. Privitera,et al.  Implementing a search for gravitational waves from binary black holes with nonprecessing spin , 2016 .

[37]  M. Mclaughlin,et al.  PULSAR J0453+1559: A DOUBLE NEUTRON STAR SYSTEM WITH A LARGE MASS ASYMMETRY , 2015, 1509.08805.

[38]  C Affeldt,et al.  Advanced LIGO , 2014, 1411.4547.

[39]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[40]  P. Ajith,et al.  Effectual template bank for the detection of gravitational waves from inspiralling compact binaries with generic spins , 2012, 1210.6666.

[41]  J. Lattimer The Nuclear Equation of State and Neutron Star Masses , 2012, 1305.3510.

[42]  Jillian Bellovary,et al.  Black holes in the early Universe , 2012, Reports on progress in physics. Physical Society.

[43]  W. Farr,et al.  MASS MEASUREMENTS OF BLACK HOLES IN X-RAY TRANSIENTS: IS THERE A MASS GAP? , 2012, 1205.1805.

[44]  Erin Kara,et al.  TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE , 2011, 1107.2665.

[45]  I. Mandel,et al.  THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES , 2010, 1011.1459.

[46]  R. Narayan,et al.  THE BLACK HOLE MASS DISTRIBUTION IN THE GALAXY , 2010, 1006.2834.

[47]  Yi Pan,et al.  Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors , 2009, 0907.0700.

[48]  S. Fairhurst,et al.  The loudest event statistic: general formulation, properties and applications , 2007, 0710.0465.

[49]  E. al.,et al.  Search for gravitational waves from binary inspirals in S3 and S4 LIGO data , 2007, 0704.3368.

[50]  J. Beaulieu,et al.  Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds , 2006, astro-ph/0607207.

[51]  E. al.,et al.  Search for gravitational waves from primordial black hole binary coalescences in the galactic halo , 2005, gr-qc/0505042.

[52]  S. Goriely,et al.  Analytical representations of unified equations of state of neutron-star matter , 2004, astro-ph/0408324.

[53]  Takahiro Tanaka,et al.  Black hole binary formation in the expanding universe: Three body problem approximation , 1998, astro-ph/9807018.

[54]  K. Thorne,et al.  Gravitational Waves from Coalescing Black Hole MACHO Binaries , 1997, astro-ph/9708060.

[55]  N. Glendenning Compact Stars: Nuclear Physics, Particle Physics, and General Relativity , 1996 .

[56]  Blanchet,et al.  Gravitational-radiation damping of compact binary systems to second post-Newtonian order. , 1995, Physical review letters.

[57]  G. Chapline,et al.  Cosmological effects of primordial black holes , 1975, Nature.

[58]  P. Mészáros The behaviour of point masses in an expanding cosmological substratum. , 1974 .

[59]  Stephen W. Hawking,et al.  Gravitationally collapsed objects of very low mass , 1971 .

[60]  S. Chandrasekhar The maximum mass of ideal white dwarfs , 1931 .

[61]  E. A. Milne,et al.  The Highly Collapsed Configurations of a Stellar Mass , 1931 .

[62]  P. Pal Cosmological parameters , 2017 .

[63]  K. Jedamzik Primordial Black Holes as Dark Matter , 2001 .

[64]  Y. Zel’dovich,et al.  The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model , 1966 .

[65]  S. Chandrasekhar The highly collapsed configurations of a stellar mass (Second paper) , 1935 .