On interval predictor-corrector methods

One can approximate numerically the solution of the initial value problem using single or multistep methods. Linear multistep methods are used very often, especially combinations of explicit and implicit methods. In floating-point arithmetic from an explicit method (a predictor), we can get the first approximation to the solution obtained from an implicit method (a corrector). We can do the same with interval multistep methods. Realizing such interval methods in floating-point interval arithmetic, we compute solutions in the form of intervals which contain all possible errors. In this paper, we propose interval predictor-corrector methods based on conventional Adams-Bashforth-Moulton and Nyström-Milne-Simpson methods. In numerical examples, these methods are compared with interval methods of Runge-Kutta type and methods based on high-order Taylor series. It appears that the presented methods yield comparable approximations to the solutions.

[1]  Andrzej Marciniak,et al.  THREE- AND FOUR-STAGE IMPLICIT INTERVAL METHODS OF RUNGE-KUTTA TYPE , 2000 .

[2]  Martin Berz,et al.  Computation and Application of Taylor Polynomials with Interval Remainder Bounds , 1998, Reliab. Comput..

[3]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[4]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[5]  Andrzej Marciniak,et al.  On explicit interval methods of Adams - Bashforth type , 2002 .

[6]  Andrzej Marciniak,et al.  On multistep interval methods for solving the initial value problem , 2007 .

[7]  Nedialko S. Nedialkov,et al.  Some recent advances in validated methods for IVPs for ODEs , 2002 .

[8]  K. Nickel Using Interval Methods for the Numerical Solution of ODE'S (Ordinary Differential Equations). , 1983 .

[9]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[10]  H. Bauch,et al.  On the iterative inclusion of solutions in initial-value problems for ordinary differential equations , 1979, Computing.

[11]  Eldon Hansen,et al.  Topics in Interval Analysis , 1969 .

[12]  George F. Corliss,et al.  Validating an A Priori Enclosure Using High-Order Taylor Series , 2007 .

[13]  Ulrich Kulisch,et al.  Numerical Toolbox for Verified Computing I: Basic Numerical Problems Theory, Algorithms, and Pascal-Xsc Programs , 1994 .

[14]  Tom Gambill,et al.  Logarithmic reduction of the wrapping effect with application to ordinary differential equations , 1988 .

[15]  J. Butcher Implicit Runge-Kutta processes , 1964 .

[16]  Martin Berz,et al.  Performance of Taylor Model Methods for Validated Integration of ODEs , 2004, PARA.

[17]  N. Nedialkov,et al.  Interval Tools for ODEs and DAEs , 2006, 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006).

[18]  Andrzej Marciniak,et al.  Implicit interval multistep methods for solving the initial value problem , 2002 .

[19]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[20]  John D. Pryce,et al.  Two FORTRAN packages for assessing initial value methods , 1987, TOMS.

[21]  Andrzej Marciniak,et al.  ONE- AND TWO-STAGE IMPLICIT INTERVAL METHODS OF RUNGE-KUTTA TYPE , 1999 .

[23]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[24]  Ulrich W. Kulisch,et al.  Numerical Toolbox for Verified Computing I , 1993 .

[25]  Karl Nickel How to Fight the Wrapping Effect , 1985, Interval Mathematics.

[26]  T. E. Hull,et al.  Comparing numerical methods for stiff systems of O.D.E:s , 1975 .

[27]  Andrzej Marciniak,et al.  On Two Families of Implicit Interval Methods of Adams-Moulton Type , 2006 .

[28]  M. Berz,et al.  SUPPRESSION OF THE WRAPPING EFFECT BY TAYLOR MODEL - BASED VERIFIED INTEGRATORS: THE SINGLE STEP , 2007 .

[29]  Nedialko S. Nedialkov,et al.  A New Perspective on the Wrapping Effect in Interval Methods for Initial Value Problems for Ordinary Differential Equations , 2001, Perspectives on Enclosure Methods.

[30]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[31]  Martin Berz,et al.  SUPPRESSION OF THE WRAPPING EFFECT BY TAYLOR MODEL- BASED VERIFIED INTEGRATORS: LONG-TERM STABILIZATION BY PRECONDITIONING , 2011 .

[32]  Andrzej Marciniak,et al.  Multistep Interval Methods of Nyström and Milne-Simpson Types , 2007 .

[33]  Andrzej Marciniak,et al.  Implicit Interval Methods for Solving the Initial Value Problem , 2004, Numerical Algorithms.

[34]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[35]  N. F. Stewart A heuristic to reduce the wrapping effect in the numerical solution ofx′=f(t,x) , 1971 .

[36]  Andrzej Marciniak,et al.  A Survey of Interval Runge-Kutta and Multistep Methods for Solving the Initial Value Problem , 2007, PPAM.