On tempo tracking: Tempogram Representation and Kalman filtering

We formulate tempo tracking in a Bayesian framework where a tempo tracker is modeled as a stochastic dynamical system. The tempo is modeled as a hidden state variable of the system and is estimated by a Kalman filter. The Kalman filter operates on a Tempogram, a wavelet-like multiscale expansion of a real performance. An important advantage of our approach is that it is possible to formulate both off-line or real-time algorithms. The simulation results on a systematically collected set of MIDI piano performances of Yesterday and Michelle by the Beatles shows accurate tracking of approximately 90% of the beats.

[1]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[2]  John A. Michon,et al.  Timing in temporal tracking , 1967 .

[3]  H. C. Longuet-Higgins,et al.  Perception of melodies , 1976, Nature.

[4]  H C Longuet-Higgins,et al.  The Perception of Musical Rhythms , 1982, Perception.

[5]  Barry Vercoe,et al.  The Synthetic Performer in The Context of Live Performance , 1984, International Conference on Mathematics and Computing.

[6]  Roger B. Dannenberg,et al.  An On-Line Algorithm for Real-Time Accompaniment , 1984, ICMC.

[7]  Miller Puckette,et al.  Synthetic Rehearsal: Training the Synthetic Performer , 1985, ICMC.

[8]  Richard Kronland-Martinet,et al.  The Wavelet Transform for Analysis, Synthesis, and Processing of Speech and Music Sounds , 1988 .

[9]  Peter Desain,et al.  Quantization of musical time: a connectionist approach , 1989 .

[10]  Henkjan Honing POCO: An Environment for Analysing, Modifying and Generating Expression in Music , 1990, ICMC.

[11]  O. Rioul,et al.  Wavelets and signal processing , 1991, IEEE Signal Processing Magazine.

[12]  Roger B. Dannenberg,et al.  Music Understanding By Computer , 1993 .

[13]  Peter Desain,et al.  Foot-tapping: a brief intoduction to beat induction , 1994, ICMC.

[14]  Neil P. McAngus Todd,et al.  The auditory “Primal Sketch”: A multiscale model of rhythmic grouping , 1994 .

[15]  Geoffrey E. Hinton,et al.  Parameter estimation for linear dynamical systems , 1996 .

[16]  Eric D. Scheirer,et al.  Tempo and beat analysis of acoustic musical signals. , 1998, The Journal of the Acoustical Society of America.

[17]  Yoichi Muraoka,et al.  Musical understanding at the beat level: real-time beat tracking for audio signals , 1998 .

[18]  David F. Rosenthal,et al.  Computational auditory scene analysis , 1998 .

[19]  Petri Toiviainen,et al.  An interactive MIDI accompanist , 1998 .

[20]  Kevin Murphy,et al.  Switching Kalman Filters , 1998 .

[21]  Peter J. W. Rayner,et al.  Digital Audio Restoration: A Statistical Model Based Approach , 1998 .

[22]  Zoubin Ghahramani,et al.  A Unifying Review of Linear Gaussian Models , 1999, Neural Computation.

[23]  William A. Sethares,et al.  Periodicity transforms , 1999, IEEE Trans. Signal Process..

[24]  Andrew D. Sterian,et al.  Model-based segmentation of time-frequency images for musical transcription. , 1999 .

[25]  E. Large,et al.  The dynamics of attending: How people track time-varying events. , 1999 .

[26]  Luke Windsor,et al.  Make Me a Match: An Evaluation of Different Approaches to ScorePerformance Matching , 2000, Computer Music Journal.

[27]  Peter Desain,et al.  Rhythm Quantization for Transcription , 2000, Computer Music Journal.

[28]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .