Galaxy–Galaxy lensing in HSC: Validation tests and the impact of heterogeneous spectroscopic training sets

Although photometric redshifts (photo-z’s) are crucial ingredients for current and upcoming large-scale surveys, the high-quality spectroscopic redshifts currently available to train, validate, and test them are substantially non-representative in both magnitude and colour. We investigate the nature and structure of this bias by tracking how objects from a heterogeneous training sample contribute to photo-z predictions as a function of magnitude and colour, and illustrate that the underlying redshift distribution at fixed colour can evolve strongly as a function of magnitude. We then test the robustness of the galaxy–galaxy lensing signal in 120 deg2 of HSC–SSP DR1 data to spectroscopic completeness and photo-z biases, and find that their impacts are sub-dominant to current statistical uncertainties. Our methodology provides a framework to investigate how spectroscopic incompleteness can impact photo-z-based weak lensing predictions in future surveys such as LSST and WFIRST.

[1]  David N. Spergel,et al.  Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data , 2018, Publications of the Astronomical Society of Japan.

[2]  Jeffrey Kruk,et al.  Photometric Redshift Calibration Requirements for WFIRST Weak-lensing Cosmology: Predictions from CANDELS , 2018, The Astrophysical Journal.

[3]  Yutaka Komiyama,et al.  Hyper Suprime-Cam: Filters , 2018, Publications of the Astronomical Society of Japan.

[4]  B. Hoyle,et al.  Self-consistent redshift estimation using correlation functions without a spectroscopic reference sample , 2018, Monthly Notices of the Royal Astronomical Society.

[5]  Rachel Mandelbaum,et al.  Weak Lensing for Precision Cosmology , 2017, Annual Review of Astronomy and Astrophysics.

[6]  B. Yanny,et al.  Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.

[7]  R. Nichol,et al.  Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear , 2017, Physical Review D.

[8]  R. Nichol,et al.  Dark Energy Survey year 1 results: Galaxy-galaxy lensing , 2017, Physical Review D.

[9]  N. E. Sommer,et al.  Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies , 2017, Monthly Notices of the Royal Astronomical Society.

[10]  P. Schneider,et al.  KiDS-450: The tomographic weak lensing power spectrum and constraints on cosmological parameters , 2017, 1706.02892.

[11]  A. Leauthaud,et al.  Source Selection for Cluster Weak Lensing Measurements in the Hyper Suprime-Cam Survey , 2017, 1706.00427.

[12]  Satoshi Miyazaki,et al.  The first-year shear catalog of the Subaru Hyper Suprime-Cam Subaru Strategic Program Survey , 2017, 1705.06745.

[13]  Song Huang,et al.  The Hyper Suprime-Cam Software Pipeline , 2017, 1705.06766.

[14]  Satoshi Miyazaki,et al.  The bright-star masks for the HSC-SSP survey , 2017, 1705.00622.

[15]  Daniel Masters,et al.  The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1 , 2017, 1704.06665.

[16]  Satoshi Miyazaki,et al.  Photometric Redshifts for Hyper Suprime-Cam Subaru Strategic Program Data Release 1 , 2017, 1704.05988.

[17]  A. K. Inoue,et al.  The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.

[18]  A. Leauthaud,et al.  Testing redMaPPer centring probabilities using galaxy clustering and galaxy–galaxy lensing , 2017, Monthly Notices of the Royal Astronomical Society.

[19]  Maria E. S. Pereira,et al.  Lensing is Low: Cosmology, Galaxy Formation, or New Physics? , 2016, 1611.08606.

[20]  A. Slosar,et al.  Galaxy–galaxy lensing estimators and their covariance properties , 2016, 1611.00752.

[21]  Daniel Thomas,et al.  Cosmology from large-scale galaxy clustering and galaxy-galaxy lensing with dark energy survey science verification data , 2016, 1604.07871.

[22]  O. Fèvre,et al.  THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.

[23]  H. Peiris,et al.  Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys , 2016, 1602.05960.

[24]  D. Eisenstein,et al.  Deriving Photometric Redshifts using Fuzzy Archetypes and Self-Organizing Maps. I. Methodology , 2015, 1510.08073.

[25]  D. Wake,et al.  LEVERAGING 3D-HST GRISM REDSHIFTS TO QUANTIFY PHOTOMETRIC REDSHIFT PERFORMANCE , 2015, 1510.07049.

[26]  Mattia Fumagalli,et al.  THE 3D-HST SURVEY: HUBBLE SPACE TELESCOPE WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR ∼100,000 GALAXIES , 2015, 1510.02106.

[27]  Adam O. Kalinich,et al.  MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS , 2015, 1509.03318.

[28]  J. A. Vázquez-Mata,et al.  Galaxy and mass assembly (GAMA): End of survey report and data release 2 , 2015, 1506.08222.

[29]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[30]  S. J. Lilly,et al.  THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. III. SURVEY DESIGN, PERFORMANCE, AND SAMPLE CHARACTERISTICS , 2014, 1409.0447.

[31]  R. J. Brunner,et al.  Sparse representation of photometric redshift probability density functions: preparing for petascale astronomy , 2014, 1404.6442.

[32]  Shannon G. Patel,et al.  3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES , 2014, 1403.3689.

[33]  Robert J. Brunner,et al.  SOMz: photometric redshift PDFs with self organizing maps and random atlas , 2013, ArXiv.

[34]  G. Zamorani,et al.  The VIMOS Public Extragalactic Survey (VIPERS) - First Data Release of 57 204 spectroscopic measurements , 2013, 1310.1008.

[35]  W. M. Wood-Vasey,et al.  Spectroscopic Needs for Imaging Dark Energy Experiments , 2013, 1309.5384.

[36]  A. Mazure,et al.  The VIMOS VLT Deep Survey final data release: a spectroscopic sample of 35 016 galaxies and AGN out to z ~ 6.7 selected with 17.5 ≤ iAB ≤ 24.75 , 2013, 1307.0545.

[37]  M. Cirasuolo,et al.  High-velocity outflows from young star-forming galaxies in the UKIDSS Ultra-Deep Survey , 2013, 1304.7276.

[38]  T. Budavari,et al.  Clustering-based redshift estimation: method and application to data , 2013, 1303.4722.

[39]  M. Blanton,et al.  THE PRISM MULTI-OBJECT SURVEY (PRIMUS). II. DATA REDUCTION AND REDSHIFT FITTING , 2013, 1303.2672.

[40]  R. Ellis,et al.  A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging , 2012, 1212.5222.

[41]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: Final data release and cosmological results , 2012, 1210.2130.

[42]  A. Connolly,et al.  THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.

[43]  R. Mandelbaum,et al.  Photometric redshift requirements for lens galaxies in galaxy–galaxy lensing analyses , 2011, 1107.1395.

[44]  M. Blanton,et al.  THE PRISM MULTI-OBJECT SURVEY (PRIMUS). I. SURVEY OVERVIEW AND CHARACTERISTICS , 2010, 1011.4307.

[45]  B. Garilli,et al.  THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE , 2009 .

[46]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[47]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[48]  Huan Lin,et al.  Estimating the redshift distribution of photometric galaxy samples – II. Applications and tests of a new method , 2008, 0801.3822.

[49]  S. J. Lilly,et al.  Precision photometric redshift calibration for galaxy–galaxy weak lensing , 2007, 0709.1692.

[50]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview , 2006, astro-ph/0612305.

[51]  J. Brinkmann,et al.  Systematic errors in weak lensing: application to SDSS galaxy-galaxy weak lensing , 2005, astro-ph/0501201.

[52]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[53]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[54]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[55]  R. Stewart,et al.  Diatomic generalized x‐ray scattering factors: Results from Hartree–Fock electron density functions , 1975 .

[56]  Yukiko Kamata,et al.  Hyper Suprime-Cam: System design and verification of image quality , 2018 .

[57]  Yukiko Kamata,et al.  Hyper Suprime-Cam: Camera dewar design , 2018 .

[58]  Satoshi Miyazaki,et al.  The on-site quality-assurance system for Hyper Suprime-Cam: OSQAH , 2018 .

[59]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[60]  Teuvo Kohonen,et al.  Self-Organizing Maps, Third Edition , 2001, Springer Series in Information Sciences.

[61]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[62]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .