Galaxy–Galaxy lensing in HSC: Validation tests and the impact of heterogeneous spectroscopic training sets
暂无分享,去创建一个
D. Eisenstein | A. Leauthaud | S. More | R. Mandelbaum | D. Masters | P. Capak | J. Speagle | C. Sif'on | Christopher Bradshaw | Song Huang | F. Ardila | M. Simet
[1] David N. Spergel,et al. Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data , 2018, Publications of the Astronomical Society of Japan.
[2] Jeffrey Kruk,et al. Photometric Redshift Calibration Requirements for WFIRST Weak-lensing Cosmology: Predictions from CANDELS , 2018, The Astrophysical Journal.
[3] Yutaka Komiyama,et al. Hyper Suprime-Cam: Filters , 2018, Publications of the Astronomical Society of Japan.
[4] B. Hoyle,et al. Self-consistent redshift estimation using correlation functions without a spectroscopic reference sample , 2018, Monthly Notices of the Royal Astronomical Society.
[5] Rachel Mandelbaum,et al. Weak Lensing for Precision Cosmology , 2017, Annual Review of Astronomy and Astrophysics.
[6] B. Yanny,et al. Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.
[7] R. Nichol,et al. Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear , 2017, Physical Review D.
[8] R. Nichol,et al. Dark Energy Survey year 1 results: Galaxy-galaxy lensing , 2017, Physical Review D.
[9] N. E. Sommer,et al. Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies , 2017, Monthly Notices of the Royal Astronomical Society.
[10] P. Schneider,et al. KiDS-450: The tomographic weak lensing power spectrum and constraints on cosmological parameters , 2017, 1706.02892.
[11] A. Leauthaud,et al. Source Selection for Cluster Weak Lensing Measurements in the Hyper Suprime-Cam Survey , 2017, 1706.00427.
[12] Satoshi Miyazaki,et al. The first-year shear catalog of the Subaru Hyper Suprime-Cam Subaru Strategic Program Survey , 2017, 1705.06745.
[13] Song Huang,et al. The Hyper Suprime-Cam Software Pipeline , 2017, 1705.06766.
[14] Satoshi Miyazaki,et al. The bright-star masks for the HSC-SSP survey , 2017, 1705.00622.
[15] Daniel Masters,et al. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1 , 2017, 1704.06665.
[16] Satoshi Miyazaki,et al. Photometric Redshifts for Hyper Suprime-Cam Subaru Strategic Program Data Release 1 , 2017, 1704.05988.
[17] A. K. Inoue,et al. The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.
[18] A. Leauthaud,et al. Testing redMaPPer centring probabilities using galaxy clustering and galaxy–galaxy lensing , 2017, Monthly Notices of the Royal Astronomical Society.
[19] Maria E. S. Pereira,et al. Lensing is Low: Cosmology, Galaxy Formation, or New Physics? , 2016, 1611.08606.
[20] A. Slosar,et al. Galaxy–galaxy lensing estimators and their covariance properties , 2016, 1611.00752.
[21] Daniel Thomas,et al. Cosmology from large-scale galaxy clustering and galaxy-galaxy lensing with dark energy survey science verification data , 2016, 1604.07871.
[22] O. Fèvre,et al. THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.
[23] H. Peiris,et al. Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys , 2016, 1602.05960.
[24] D. Eisenstein,et al. Deriving Photometric Redshifts using Fuzzy Archetypes and Self-Organizing Maps. I. Methodology , 2015, 1510.08073.
[25] D. Wake,et al. LEVERAGING 3D-HST GRISM REDSHIFTS TO QUANTIFY PHOTOMETRIC REDSHIFT PERFORMANCE , 2015, 1510.07049.
[26] Mattia Fumagalli,et al. THE 3D-HST SURVEY: HUBBLE SPACE TELESCOPE WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR ∼100,000 GALAXIES , 2015, 1510.02106.
[27] Adam O. Kalinich,et al. MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS , 2015, 1509.03318.
[28] J. A. Vázquez-Mata,et al. Galaxy and mass assembly (GAMA): End of survey report and data release 2 , 2015, 1506.08222.
[29] Hilo,et al. THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.
[30] S. J. Lilly,et al. THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. III. SURVEY DESIGN, PERFORMANCE, AND SAMPLE CHARACTERISTICS , 2014, 1409.0447.
[31] R. J. Brunner,et al. Sparse representation of photometric redshift probability density functions: preparing for petascale astronomy , 2014, 1404.6442.
[32] Shannon G. Patel,et al. 3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES , 2014, 1403.3689.
[33] Robert J. Brunner,et al. SOMz: photometric redshift PDFs with self organizing maps and random atlas , 2013, ArXiv.
[34] G. Zamorani,et al. The VIMOS Public Extragalactic Survey (VIPERS) - First Data Release of 57 204 spectroscopic measurements , 2013, 1310.1008.
[35] W. M. Wood-Vasey,et al. Spectroscopic Needs for Imaging Dark Energy Experiments , 2013, 1309.5384.
[36] A. Mazure,et al. The VIMOS VLT Deep Survey final data release: a spectroscopic sample of 35 016 galaxies and AGN out to z ~ 6.7 selected with 17.5 ≤ iAB ≤ 24.75 , 2013, 1307.0545.
[37] M. Cirasuolo,et al. High-velocity outflows from young star-forming galaxies in the UKIDSS Ultra-Deep Survey , 2013, 1304.7276.
[38] T. Budavari,et al. Clustering-based redshift estimation: method and application to data , 2013, 1303.4722.
[39] M. Blanton,et al. THE PRISM MULTI-OBJECT SURVEY (PRIMUS). II. DATA REDUCTION AND REDSHIFT FITTING , 2013, 1303.2672.
[40] R. Ellis,et al. A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging , 2012, 1212.5222.
[41] Scott Croom,et al. The WiggleZ Dark Energy Survey: Final data release and cosmological results , 2012, 1210.2130.
[42] A. Connolly,et al. THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.
[43] R. Mandelbaum,et al. Photometric redshift requirements for lens galaxies in galaxy–galaxy lensing analyses , 2011, 1107.1395.
[44] M. Blanton,et al. THE PRISM MULTI-OBJECT SURVEY (PRIMUS). I. SURVEY OVERVIEW AND CHARACTERISTICS , 2010, 1011.4307.
[45] B. Garilli,et al. THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE , 2009 .
[46] K. Abazajian,et al. THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.
[47] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.
[48] Huan Lin,et al. Estimating the redshift distribution of photometric galaxy samples – II. Applications and tests of a new method , 2008, 0801.3822.
[49] S. J. Lilly,et al. Precision photometric redshift calibration for galaxy–galaxy weak lensing , 2007, 0709.1692.
[50] L. Guzzo,et al. The Cosmic Evolution Survey (COSMOS): Overview , 2006, astro-ph/0612305.
[51] J. Brinkmann,et al. Systematic errors in weak lensing: application to SDSS galaxy-galaxy weak lensing , 2005, astro-ph/0501201.
[52] R. Nichol,et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.
[53] N. Benı́tez. Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.
[54] J. B. Oke,et al. Secondary standard stars for absolute spectrophotometry , 1983 .
[55] R. Stewart,et al. Diatomic generalized x‐ray scattering factors: Results from Hartree–Fock electron density functions , 1975 .
[56] Yukiko Kamata,et al. Hyper Suprime-Cam: System design and verification of image quality , 2018 .
[57] Yukiko Kamata,et al. Hyper Suprime-Cam: Camera dewar design , 2018 .
[58] Satoshi Miyazaki,et al. The on-site quality-assurance system for Hyper Suprime-Cam: OSQAH , 2018 .
[59] Teuvo Kohonen,et al. Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.
[60] Teuvo Kohonen,et al. Self-Organizing Maps, Third Edition , 2001, Springer Series in Information Sciences.
[61] Teuvo Kohonen,et al. Self-Organizing Maps , 2010 .
[62] T. Kohonen. Self-organized formation of topographically correct feature maps , 1982 .