Decoding Seen and Attended Motion Directions from Activity in the Human Visual Cortex

[1]  G. Rees,et al.  Predicting the orientation of invisible stimuli from activity in human primary visual cortex , 2005, Nature Neuroscience.

[2]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[3]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[4]  Tom M. Mitchell,et al.  Learning to Decode Cognitive States from Brain Images , 2004, Machine Learning.

[5]  S. Treue,et al.  Feature-Based Attention Increases the Selectivity of Population Responses in Primate Visual Cortex , 2004, Current Biology.

[6]  David Whitney,et al.  Flexible retinotopy: motion-dependent position coding in the visual cortex. , 2010, Science.

[7]  Takeo Watanabe,et al.  Neuroimaging of direction-selective mechanisms for second-order motion. , 2003, Journal of neurophysiology.

[8]  David Whitney,et al.  Flexible Retinotopy: Motion-Dependent Position Coding in the Visual Cortex , 2003, Science.

[9]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[10]  Adriane E Seiffert,et al.  Functional MRI studies of human visual motion perception: texture, luminance, attention and after-effects. , 2003, Cerebral cortex.

[11]  Frank Tong,et al.  Cognitive neuroscience: Primary visual cortex and visual awareness , 2003, Nature Reviews Neuroscience.

[12]  T. Carlson,et al.  Patterns of Activity in the Categorical Representations of Objects , 2003, Journal of Cognitive Neuroscience.

[13]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[14]  G. Boynton,et al.  Global effects of feature-based attention in human visual cortex , 2002, Nature Neuroscience.

[15]  Geraint Rees,et al.  Neural correlates of consciousness in humans , 2002, Nature Reviews Neuroscience.

[16]  David J. Heeger,et al.  Pattern-motion responses in human visual cortex , 2002, Nature Neuroscience.

[17]  Nikos K. Logothetis,et al.  Motion Processing in the Macaque: Revisited with Functional Magnetic Resonance Imaging , 2001, The Journal of Neuroscience.

[18]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[19]  Á. Pascual-Leone,et al.  Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness , 2001, Science.

[20]  Barry J. Dickson,et al.  Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness , 2001 .

[21]  R. Turner,et al.  Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain , 2000, Current Biology.

[22]  D. Heeger,et al.  Motion Opponency in Visual Cortex , 1999, The Journal of Neuroscience.

[23]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[24]  R. Desimone Visual attention mediated by biased competition in extrastriate visual cortex. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[25]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[26]  Scott T. Grafton,et al.  Automated image registration: I. General methods and intrasubject, intramodality validation. , 1998, Journal of computer assisted tomography.

[27]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[28]  A. Treisman,et al.  Voluntary Attention Modulates fMRI Activity in Human MT–MST , 1997, Neuron.

[29]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[30]  A. Grinvald,et al.  Functional Organization for Direction of Motion and Its Relationship to Orientation Maps in Cat Area 18 , 1996, The Journal of Neuroscience.

[31]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[32]  D. Fitzpatrick,et al.  A systematic map of direction preference in primary visual cortex , 1996, Nature.

[33]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[34]  A. Dale,et al.  Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging , 1995, Nature.

[35]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  A Grinvald,et al.  Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[37]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[39]  A. Watson,et al.  Quest: A Bayesian adaptive psychometric method , 1983, Perception & psychophysics.